
Scanning Pictures The Boustrophedon Way

Henning Fernau1, Meenakshi Paramasivan1, Markus L. Schmid1

and D. Gnanaraj Thomas2

1 Fachbereich 4 – Abteilung Informatik, Universität Trier, D-54286 Trier, Germany,
{Fernau,Paramasivan,MSchmid}@uni-trier.de

2 Department of Mathematics, Madras Christian College, Chennai - 600059, India,
dgthomasmcc@yahoo.com

Abstract. We are introducing and discussing finite automata working
on rectangular-shaped arrays (i. e., pictures) in a boustrophedon reading
mode. We derive several combinatorial, algebraic and decidability results
for the corresponding class of picture languages.

1 Introduction

Syntactic considerations of digital images have a tradition of about five decades.
They should (somehow) reflect methods applied to picture processing. How-
ever, one of the basic methods of scanning pictures in practice have not been
thoroughly investigated from a more theoretical point of view: that of using
space-filling curves. Here, we start such an investigation with what can be con-
sidered as the most simple way of defining space-filling curves: scanning line
after line of an image, alternating the direction of movement every time when
the image boundary is encountered (more information on the use of space-filling
curves in connection with image processing or picture languages can be found
in [11,13,17,20]).

We consider finite automata that work this way. We show that they are
(essentially) equivalent to regular matrix languages as introduced in a sequence
of papers of Rani Siromoney and her co-authors already in the early 1970s.
Possibly surprisingly enough, we also present quite a number of new results
for this class of picture languages, including a discussion of natural decidability
questions lacking so far.

2 Our Model and Some Examples

General Definitions. In this section, we briefly recall the standard definitions
and notations regarding one- and two-dimensional words and languages.

Let N := {1, 2, 3, . . .} and let N0 := N∪{0}. For a finite alphabet Σ, a string
or word (over Σ) is a finite sequence of symbols from Σ, and ε stands for the
empty string. The notation Σ+ denotes the set of all nonempty strings over Σ,
and Σ∗ := Σ+∪{ε}. For the concatenation of two strings w1, w2 we write w1 ·w2

or simply w1w2. We say that a string v ∈ Σ∗ is a factor of a string w ∈ Σ∗ if

2 H. Fernau, M. Paramasivan, M. L. Schmid, D. G. Thomas

there are u1, u2 ∈ Σ∗ such that w = u1 · v · u2. If u1 or u2 is the empty string,
then v is a prefix (or a suffix, respectively) of w. The notation |w| stands for the
length of a string w.

A two-dimensional word (also called picture, matrix or array) over Σ is a
tuple

W := ((a1,1, a1,2, . . . , a1,n), (a2,1, a2,2, . . . , a2,n), . . . , (am,1, am,2, . . . , am,n)) ,

where m,n ∈ N and, for every i, 1 ≤ i ≤ m, and j, 1 ≤ j ≤ n, ai,j ∈ Σ. We
define the number of columns (or width) and number of rows (or height) of W
by |W |c := n and |W |r := m, respectively. The empty picture is denoted by λ,
i. e., |λ|c = |λ|r = 0. For the sake of convenience, we also denote W by [ai,j]m,n

or by a matrix in a more pictorial form. If we want to refer to the jth symbol in
row i of the picture W , then we use W [i, j] = ai,j . By Σ++, we denote the set
of all nonempty pictures over Σ, and Σ∗∗ := Σ++ ∪ {λ}. Every subset L ⊆ Σ∗∗
is a picture language.

Let W := [ai,j]m,n and W ′ := [a′i,j]m′,n′ be two non-empty pictures over Σ.
The column concatenation of W and W ′, denoted by W �W ′, is undefined if
m 6= m′ and is the picture

a1,1 a1,2 ... a1,n b1,1 b1,2 ... b1,n′

a2,1 a2,2 ... a2,n b2,1 b2,2 ... b2,n′

...
...

. . .
...

...
...

. . .
...

am,1 am,2 ... am,n bm′,1 bm′,2 ... bm′,n′

otherwise. The row concatenation of W and W ′, denoted by W�W ′, is undefined
if n 6= n′ and is the picture

a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n

...
...

. . .
...

am,1 am,2 ... am,n

b1,1 b1,2 ... b1,n′

b2,1 b2,2 ... b2,n′

...
...

. . .
...

bm′,1 bm′,2 ... bm′,n′

otherwise. In order to denote that, e. g., U�V is undefined, we also write U�V =
undef.

Example 1. Let

W1 :=
a b a
b c a
a b b

,W2 :=
b c
b a
c a
,W3 := a b c

c b b and W4 := a a
a b .

Then W1 �W2 = W1 �W3 = undef, but

W1 �W2 =
a b a b c
b c a b a
a b b c a

and W1 �W3 =
a b a
b c a
a b b
a b c
c b b

.

For a picture W and k, k′ ∈ N, by W k we denote the k-fold column-concatenation
of W , by Wk we denote the k-fold row-concatenation of W , and W k

k′ = (W k)k′ .

Scanning Pictures The Boustrophedon Way 3

Boustrophedon Finite Automaton. A boustrophedon finite automaton, or
BFA for short, can be specified as a quintuple M = (Q,Σ,R, s, F), where Q is
a finite set of states, Σ is an input alphabet, R ⊆ Q× (Σ∗ ∪{#})×Q is a finite
set of rules. The special symbol # /∈ Σ indicates the border of the rectangular
picture that is processed, s ∈ Q is the initial state, F is the set of final states.

Let � be a new symbol indicating a blank position and let Σ+ := Σ∪{#,�}.
Then CM := Q×Σ∗∗+ × N is the set of configurations of M .

A configuration (p,A,m) ∈ CM is valid if 1 ≤ m ≤ |A|r and, for every i,
1 ≤ i ≤ m − 1, the ith row equals # �|A|c−2 #, for every j, m + 1 ≤ j ≤ |A|r,
the jth row equals #w#, w ∈ Σ|A|c−2, and, for some n, 0 ≤ n ≤ |A|c − 2,
w ∈ Σ|A|c−n−2, the mth row equals # �n w#, if m is odd and #w �n #, if m
is even.

If (p,A,m′) and (q, A′,m′) are two valid configurations such that A and A′

are identical but for one position (i, j), where A′[i, j] = � while A[i, j] ∈ Σ,
then (p,A,m′) `M (q, A′,m′) if pA[i, j]→ q ∈ R. If (p,A,m′) and (q, A,m′ + 1)
are two valid configurations, then (p,A,m′) `M (q, A,m′ + 1) if the m′th row
contains only # and � symbols, and if p# → q ∈ R. The reflexive transitive
closure of the relation `M is denoted by `∗M .

The BFA M is deterministic, or a BDFA for short, if for all p ∈ Q and
a ∈ Σ ∪ {#}, there is at most one q ∈ Q with pa→ q ∈ R.

The language accepted by M is then the set of all m× n pictures A over Σ
such that

(s,#m :A: #m, 1) `∗M (f,#m :�n
m : #m,m)

for some f ∈ F (note that the automaton works on a picture with a first and last
column of only # symbols, but only the part in between these border columns is
accepted). In other words, the computation starts with scanning the left upper-
most corner of the picture and then working through the picture row-by-row, as
the ox turns, i.e., the boustrophedon way, until the last entry of the last row is
scanned. The following illustrates how a BFA scans some input picture and how
a picture of a possible configuration looks like:

a b a b a
→ → → → → → → ↓
b c a c b # ↓

↓ ← ← ← ← ← ← ← ←
↓ # a b b b b #
→ → → → → → → → ↓

a b c b b # ↓
↓ ← ← ← ← ← ← ← ←
↓ # c b b a a #
→ → → → → → → →

� � � � �
� � � � �
� � � b b
a b c b b
c b b a a

Notice that since rules of the form p#→ q need not be present in R, in some
natural sense the classical regular string languages are a special case of BFA
languages.

Example 2. The set of tokens L of all sizes and of all proportions is accepted by
the BFA M = (Q,Σ,R, s, F), where Q = {s, s1, s2, s3, s4}, Σ = {x, .},
R = {(sx, s1), (s1·, s1), (s1#, s2), (s1#, s4), (s2·, s2), (s2x, s3), (s3#, s), (s3#, s4),
(s4x, s4)}, and F = {s4}.

4 H. Fernau, M. Paramasivan, M. L. Schmid, D. G. Thomas

A sample token of L accepted by M is

x · · ·
x · · ·
x · · ·
x · · ·
x x x x

We now recall the notion of two-dimensional right-linear grammars (2RLG)
as given in [7]. The original definition of a 2RLG (under the name of a regular
matrix grammar (RMG)) and the properties of the corresponding class of picture
languages called RML can be found in [8,14,15,18].

Definition 1. A two-dimensional right-linear grammar (2RLG) is defined by a
7-tuple G = (Vh, Vv, ΣI , Σ, S,Rh, Rv), where:

– Vh is a finite set of horizontal nonterminals;
– Vv is a finite set of vertical nonterminals;
– ΣI ⊆ Vv is a finite set of intermediates;
– Σ is a finite set of terminals;
– S ∈ Vh is a starting symbol;
– Rh is a finite set of horizontal rules of the form V → AV ′ or V → A, where
V , V ′ ∈ Vh and A ∈ ΣI ;

– Rv is a finite set of vertical rules of the form W → aW ′ or W → a, where
W,W ′ ∈ Vv and a ∈ Σ.

There are two phases of derivation of the 2RLG. In the first phase, a horizon-
tal string of intermediate symbols is generated by means of the string grammar
Gh = (Vh, ΣI , S,Rh), denoted by H(G). In the second phase, treating each in-
termediate as a start symbol, the vertical generation of the actual picture is done
in parallel, by applying a finite set of right-linear rules Rv. In order to produce
a rectangular-shaped picture, the rules of Rv must be applied in parallel; also
this means that the rules of the form Vi → ai are all applied in every column si-
multaneously to finish the picture with generating its last row. These grammars
make sure that the columns can grow only in downward direction.

We note that our model is closely connected with 2RLG, as we will show
more precisely in the following. The formalization is closer to our model than
the original one due to Siromoney and her co-authors.

3 Characterization Results

Clearly, BFAs are a special form of 4-NFA (4-way nondeterministic finite au-
tomata, see [7]), and it is known that for these 2-dimensional automata, the
deterministic variant is weaker regarding its descriptive capacity compared to
the nondeterministic one. Hence, and also because of the practical relevance of
the deterministic model, the following result is interesting.

Theorem 1. BDFAs and BFAs describe the same class of picture languages.

Scanning Pictures The Boustrophedon Way 5

Proof. Apply the well-known subset construction. This works out as our BFAs
are syntactically the same as classical finite automata, only the interpretation of
their processsing is different. ut

Next, we examine the question whether the boustrophedon processing mode
of our automata is essential. To this end, let us consider yet another interpreta-
tion of finite automata, this time termed returning finite automata, or RFA for
short. Syntactically, they are identical to BFA, so they can be again described
by a quintuple M = (Q,Σ,R, s, F). However, they always process rows from
left to right. Formally, this means that we can carry over all parts of the defi-
nition of BFA apart from the notion of a valid configuration, which needs to be
slightly modified. Now, a configuration (p,A,m) ∈ CM is valid if 1 ≤ m ≤ |A|r
and, for every i, 1 ≤ i ≤ m − 1, the ith row equals # �|A|c−2 #, for every j,
m + 1 ≤ j ≤ |A|r, the jth row equals #w#, w ∈ Σ|A|c−2, and, for some n,
0 ≤ n ≤ |A|c − 2, w ∈ Σ|A|c−n−2, the mth row equals # �n w#.

Theorem 2. BFAs and RFAs describe the same class of picture languages.

Proof. We first show how an RFA can simulate a BFA. The basic idea can be
summarised as follows. On the first row, which is scanned from left to right by
both automata, the RFA simulates the BFA one to one. Assume that the BFA,
while moving on to the second row, changes into a state q, scans the row from
right to left and enters a state p when the beginning of this row is reached. In
order to simulate this behaviour, the RFA stores its current state q in the finite
state control and guesses the state p. It then scans the second row from left
to right (starting in state p) by applying the transitions of the BFA in reverse
direction. When the end of the row is reached, the computation only proceeds if
the RFA is in state q. This procedure is then repeated.

More formally, the states of the BFA are triples (p, q, r), where p is the actual
state, q is the state that should be reached after finishing a row and r indicates
wheter or not a left to right scan or a right to left scan is performed (this
is necessary in order to lock or unlock the possibility of taking transitions in
reverse direction). The formal definition is as follows.

Let M = (Q,Σ,R, s, F) be some BFA. Then, define the equivalent RFA
M ′ = (Q′, Σ,R′, s′, F ′) as follows: Q′ = Q×Q× {1, 2} ∪ {s′},

R′ = {(p, r, 1)a→ (q, r, 1) | pa→ q ∈ R, r ∈ Q}
∪ {(q, r, 2)a→ (p, r, 2) | pa→ q ∈ R, r ∈ Q}
∪ {(p, p, 1)#→ (r, q, 2) | p#→ q ∈ R, r ∈ Q}
∪ {(p, p, 2)#→ (r, q, 1) | p#→ q ∈ R, r ∈ Q}
∪ {s′a→ (p, r, 1) | sa→ p ∈ R, r ∈ Q} .

Moreover, F ′ = {(r, r, 1) | r ∈ F} ∪ {(p, r, 2) | r ∈ F, p ∈ Q}. The formal
(induction) proof of the correctness of the construction is left to the reader.

The converse direction can be seen in a similar way. ut

6 H. Fernau, M. Paramasivan, M. L. Schmid, D. G. Thomas

We can likewise define finite automata that read all rows in a right-to-left
fashion. A similar construction as in the previous theorem shows (again) that this
model is equivalent to BFAs. This also shows that the direction of the rotation
mentioned in the next theorem does not matter.

Theorem 3. A picture language can be described by a BFA if and only if its
image, rotated by 90 degrees, is in RML.

Proof. We provide two simulations to show the claim.

Let G = (Vh, Vv, ΣI , Σ, S,Rh, Rv), be a 2-dimensional right-linear grammar.
The rotation can be interpreted as H(G) describing the leftmost column of the
picture, while the second phase of G then means to generate all rows, starting
from the intermediate string from H(G). We are going to construct an equiv-
alent RFA M = (Q,Σ,R, s, F), which is sufficient for giving a BFA thanks to
Theorem 2. Let Q = (Vh ∪ {f}) × (Vv ∪ {f}) ∪ {s}, where f /∈ Vh ∪ Vv, and
F = {(f, f)}. Let R contain the following rules:

– sa→ (S′, A′), if S → AS′ ∈ Rh and A→ aA′ ∈ Rv,

– sa→ (f,A′), if S → A ∈ Rh and A→ aA′ ∈ Rv,

– (X,A)a→ (X,A′), if X ∈ Vh ∪ {f} and A→ aA′ ∈ Rv,

– (X,A)a→ (X, f), if A→ a ∈ Rv, X ∈ Vh,

– (X, f)#→ (X ′, A), if X → AX ′ ∈ Rh,

– (X, f)#→ (f,A), if X → A ∈ Rh,

– (f,A)a→ (f, f), if A→ a ∈ Rv.

The idea of the construction is that the generation of columns of G is performed
in the second component of the state pairs, whereas the first component corre-
sponds to the generation of the axiom (i. e., the first row of the pictures generated
by G). The crucial difference is that the first symbol of the axiom (which in the
case of RFA is the first column instead of the first row) is generated and then the
first row is generated before the second letter of the axiom is generated in the
next row. Hence, the two phases of the picture construction of G is dovetailed.

The converse is seen as follows. Let M = (Q,Σ,R, s, F) be some RFA. We
construct an equivalent 2-dimensional right-linear grammar G = (Vh, Vv, ΣI , Σ,
S,Rh, Rv) (generating the rotated picture) with Vh = Q ∪ {S}, ΣI = Q × Q,
and rules

– S → (s, r)r ∈ Rh for all r ∈ Q,

– q → (q, r)r ∈ Rh for all q, r ∈ Q,

– q → ε for all q ∈ Q,

– (p, r)→ (q, r)a ∈ Rv for all pa→ q ∈ R, r ∈ Q,

– (p, q)→ ε ∈ Rv for all p#→ q ∈ R.

The astute reader will have noticed that we took the freedom to incorporate
erasing productions for convenience, but these can be avoided by using standard
formal language constructions. This concludes the proof. ut

Scanning Pictures The Boustrophedon Way 7

Due to Theorem 3, we can inherit several properties for the class of picture
languages described by BFAs. For instance, the class is not closed under rotation
by 90 degrees, also known as quarter turns, see [15]. On the positive side, RML
(and hence BFA picture languages) are closed under Boolean operations. More
precisely, it was shown in [15] that RML (and hence BFA picture languages) are
closed under union. We supplement this by the following two results.

Theorem 4. BFA picture languages are closed under complementation.

Proof. First, let us recall from Theorem 1 that BDFA and BFA describe the same
class of picture languages. Let M = (Q,Σ,R, s, F) be some BDFA. Then we can
construct a BDFA M by state complementation, i. e., M = (Q,Σ,R, s,Q− F).
On some input picture A, M reaches the same state as M and, furthermore,
since both M and M are deterministic, there exists exactly one state q ∈ Q that
can be reached by M and M on input A. This directly implies that A ∈ L(M) if
and only if A /∈ L(M); thus, L(M) = L(M). Hence BFA picture languages are
closed under complementation. ut

Notice that the previous theorem has become easy because we have a de-
terministic model for BFAs, in contrast to what has been established for RML
before. De Morgan’s law now immediately yields:

Corollary 1. BFA picture languages are closed under intersection.

Conversely, the results we derive in the following for BFAs can be immediately
read as results for RML, as well.

4 Pumping and Interchange Lemmas

Since in the pictures of an RML, the first row as well as the columns are generated
by regular grammars, there are two ways to apply the pumping lemma for regular
languages: we can pump the first row, which results in repetitions of a column-
factor of the picture, or we can pump each column individually, which will only
lead to a rectangular shaped picture if the pumping exponents are, in a sense,
well-chosen. Hence, we can conclude a horizontal and a vertical pumping lemma
for RML (see [9]) and, due to Theorem 3, these pumping lemmas carry over to
BFA languages:

Lemma 1. Let M be a BFA. Then there exists an n ∈ N, such that, for every
W ∈ L(M) with |W |r ≥ n, W = X � Y � Z, |X � Y |r ≤ n, |Y |r ≥ 1 and, for
every k ≥ 0, X � Yk � Z ∈ L(M).

Lemma 2. Let M be a BFA and let W ∈ L(M) with |W |r = m. Then there
exist n, r1, r2, . . . , rm ∈ N, such that, for every W ∈ L(M) with |W |c ≥ n,

W = (x1 � y1 � z1) � (x2 � y2 � z2)� . . .� (xm � ym � zm) ,

8 H. Fernau, M. Paramasivan, M. L. Schmid, D. G. Thomas

|xi � yi|c ≤ n, |yi|c ≥ 1, 1 ≤ i ≤ m, and, for every k ≥ 1,

W = (x1 � y
(k t1)
1 � z1)� (x2 � y

(k t2)
2 � z2)� . . .� (xm � y(k tm)

m � zm) ∈ L(M) ,

where ti = lcm(r1,r2,...,rm)
ri

, 1 ≤ i ≤ m.

Lemma 1 is straightforward and in order to see that Lemma 2 holds, it is
sufficient to note that n is the maximum of all the pumping lemma constants for
the individual rows (recall that each row is generated by an individual regular
grammar) and the ri are the lengths of the factors that are pumped. Obviously,
not every way of pumping the rows results in a rectangular shaped picture, so
we can only pump by multiples of the ti.

While the vertical pumping lemma has the nice property that a whole row-
factor can be pumped, in the horizontal pumping lemma we can only pump
factors of each individual row, that are independent from each other. As a result,
this lemma does not guarantee the possibility of pumping by 0, i. e., removing
a factor, which, for classical regular languages, often constitutes a particularly
elegant way of showing the non-regularity of a language.

However, it can be shown that also for BFA there exists a horizontal pump-
ing lemma that pumps whole column-factors (which then also translates into a
vertical pumping lemma for RML that pumps whole row-factors).

Lemma 3. Let M be a BFA and let m ∈ N. Then there exists an n ∈ N, such
that, for every W ∈ L(M) with |W |r ≤ m and |W |c ≥ n, W = X � Y � Z,
|X � Y |c ≤ n, |Y |c ≥ 1 and, for every k ≥ 0, X � Y k � Z ∈ L(M).

Proof. Let Q be the set of states of M , let q0 be the start state and let n =
|Q|m + 1. Furthermore, let W ∈ L(M) with |W |r = m (the case |W |r < m can
be handled analogously) and |W |c = n′ ≥ n. Since M accepts W , there is an
accepting computation (p1,W1,m1) `∗M (pk,Wk,mk) for W , i. e., (p1,W1,m1) =

(s,#m � A � #m, 1) and (pk,Wk,mk) = (f,#m � �n′

m � #m,m). We can now
consider the extended configurations (pi,W

′
i ,mi), where W ′i is like Wi with the

only difference that each � symbol is replaced by the state that has been entered
by producing this occurrence of �. Since W has m rows, the maximum number of
different columns in W ′k is |Q|m and since W has at least n = |Q|m + 1 columns,
we can conclude that W ′k = X ′�α′�Y ′�α′�Z ′, where |α′|c = 1. Furthermore,
|X ′ � α′ � Y ′|c ≤ n and |α′ � Y ′|c ≥ 1. Now let W = X � α � Y � α � Z,
where |X|c = |X ′|c, |Y |c = |Y ′|c and |Z|c = |Z ′|c. By definition of BFA, for
every i ≥ 0, M accepts X � (α� Y)i � α� Z. ut

We wish to point out that in a similar way, we can also prove a row and a
column interchange lemma (the only difference is that the number n has to be
chosen large enough to enforce repeating pairs of states):

Lemma 4. Let M be a BFA. Then there exists an n ∈ N, such that, for every
W ∈ L(M) with |W |r ≥ n, there exists a factorisation W = V1�X�V2�Y �V3,
|X|c ≥ 1, |Y |c ≥ 1, such that V1 � Y � V2 �X � V3 ∈ L(M).

Scanning Pictures The Boustrophedon Way 9

Lemma 5. Let M be a BFA and let m ∈ N. Then there exists an n ∈ N,
such that, for every W ∈ L(M) with |W |r ≤ m and |W |c ≥ n, there exists
a factorisation W = V1 � X � V2 � Y � V3, |X|c ≥ 1, |Y |c ≥ 1, such that
V1 � Y � V2 �X � V3 ∈ L(M).

5 Complexity Results

Only few complexity results have been obtained so far for RML. The only refer-
ence that we could find was an unpublished manuscript of Dassow [2] that also
merely classified the decidability versus undecidability status of several decision
problems. Here, we give the exact complexity status of the basic decidability
questions for RML, formulated in terms of BFA.

We will only look into classical formal language questions, which are:

– Universal membership: Given a B(D)FA M and a picture A (as input of
some algorithm), is A accepted by M?

– Non-emptiness: Given a B(D)FA M , is there some picture A accepted by M?
– Inequivalence: Given two B(D)FAs M1 and M2, do both automata accept

the same set of pictures?

Also, we shortly discuss the issue of minimization in the context of BD-
FAs. Our complexity considerations will be concerned with standard complexity
classes, like (N)L, i.e., (non-)deterministic logarithmic space, (N)P, i.e., (non-)
deterministic polynomial time, and NPSPACE (which is equal to PSPACE), i.e.,
polynomial space. All reductions that we sketch are implementable in determin-
istic logarithmic space.

Theorem 5. The universal membership problem for BFA is NL-complete

Proof. As universal membership is NL-hard for NFAs (working on strings), NL-
hardness is clear. As a configuration of a BFA can be specified (basically) by the
state and a pointer into the input picture, membership in NL is obvious for this
problem, as well. ut

By a similar argument applied to deterministic devices, we conclude:

Corollary 2. The universal membership problem for BDFA is L-complete

We now turn to the problem of deciding whether or not a given BFA accepts
a non-empty language.

Proposition 1. The non-emptiness problem for BFA languages is in PSPACE.

Proof. Dassow [2] shows that the emptiness problem for RML is decidable. His
proof actually shows (together with our constructions given above) that the BFA
non-emptiness problem is solvable using polynomial space. ut

10 H. Fernau, M. Paramasivan, M. L. Schmid, D. G. Thomas

In fact, we can give an alternative argument based on the pumping lemmas
that we derived. Namely, these lemmas show that any n-state BFA M either
accepts a picture with at most n rows and at most nn columns, or it does not
accept any picture at all. We can use this result by computing, for k = 1 to nn,
whether or not a word (i.e., a picture with one row) of length k (i.e., with k
columns) can be processed starting in state p and ending in state q. Notice that
we can store this information in a binary matrix with n × n many entries, and
we can update this matrix by matrix multiplication. As the maximum counter
content k = nn can be stored in polynomial space, the sketched algorithm either
finds a way to accept some picture of at most n rows and at most nn columns
that is accepted by M , or it can finally be sure that the picture language accepted
by M is empty.

Notice that in case the number of rows is a fixed constant, then this argument
shows that the BFA-non-emptiness problem is in NP. However, the hardness
proof would then fail, as the problem that we reduce from would then become
solvable in logarithmic space.

Theorem 6. The non-emptiness problem for BFA languages is NP-hard.

Proof. We reduce from the well-known NP-complete intersection emptiness prob-
lem for finite automata with a one-letter input alphabet, see [10]. The idea is to
run each of the input automata A1, . . . , Am in one line. We can assume that all
state alphabets are disjoint. All transition rules of each Ai are also transition
rules of the BFA M we are going to construct. For each final state fi of Ai,
we introduce a rule fi# → si+1, where si+1 is the initial state of Ai+1. The
set Fm of final states of Am is the set of final states of M . The intersection
L(A1)∩ · · · ∩L(Am) is non-empty if and only if some word ak is accepted by all
these automata, which means that the picture akm is accepted by M . ut

We leave the question whether or not non-emptiness of BFAs is in NP open.

Theorem 7. The inequivalence problem for BFA languages is in PSPACE (but
NP-hard).

Proof. The hardness immediately transfers from Theorem 6. As the BFA picture
languages are closed under Boolean operations (and the constructions can be
carried out in polynomial time), given two BFAs M1 and M2, we can construct a
BFAM such that the picture language accepted byM is the symmetric difference
of the picture languages of M1 and M2; hence, M1 and M2 are equivalent if and
only if the picture language of M is empty. ut

Let us finally comment shortly about minimization. Here, the question is,
given a BDFA A, to find a BDFA A∗ that has as few states as possible but
describes the same pictures as A does. Notice that this problem can be solved in
polynomial time for DFAs accepting words. It might be tempting to use this well-
known algorithm and apply it to a given BDFA A. In fact, this would result, in
general, in a smaller automaton A′ that is also picture-equivalent to A. However,
in general A∗ and A′ can differ significantly.

Scanning Pictures The Boustrophedon Way 11

Let us explain the problems with this approach with a simple example. Con-
sider the (string) language

L = {a385}+#{a385}+#{a385}+ .

The smallest DFA accepting this language has 1159 states. The pictures that
are accepted by this automaton (as a BDFA) are pictures of three rows, where
each row has a number of a’s that is a multiple of 385. However, as the length
of rows have to synchronize, it is sufficient to make sure that at least one row
has the right length, so that

L′ = {a385}+#{a}+#{a}+

would be another string language, whose minimal state deterministic finite au-
tomaton has only 388 states, that accepts the same picture language. As 385 =
5 ∗ 7 ∗ 11, we can even see that the minimal DFA for

L′′ = {a5}+#{a7}+#{a11}+ ,

which has 26 states, again accepts the same picture language when interpreted
as a BDFA. Still, it remains unclear to us if this is the minimal deterministic
automaton for the picture language in question. Even more, we do not see a
general efficient methodology how to obtain minimal-state BDFAs. The only
method that we can propose is brute-force, cycling through all smaller BDFAs
and then testing for equivalence. This can be easily implemented in polynomial
space, so that we can conclude (in terms of a decision problem).

Proposition 2. The question to determine whether a given BFA is minimal-
state can be solved in PSPACE.

Notice that we could state this (even) for nondeterministic devices, but as
indicated above, we do not know anything better for deterministic ones, either.

6 Possible Applications to Character Recognition

Character recognition has always been the testbed application for picture pro-
cessing methods. We refer to [4,12] and the literature quoted therein. In this
regard, we are now going to discuss the recognition of some classes of characters,
also (sometimes) showing the limitations of our approach, making use of the
pumping lemmas that we have shown above.

For example, consider the set K of all L tokens of all sizes with fixed propor-
tion i.e., the ratio between the two arms of L being 1. The first three members
of K are as follows:

x ·
x x

,
x · ·
x · ·
x x x

,
x · · ·
x · · ·
x · · ·
x x x x

.

We claim that K is not accepted by any BFA. Suppose there exists a BFA to
accept K. Then by Lemma 1 there exists an n ∈ N, such that, for every W ∈ K

12 H. Fernau, M. Paramasivan, M. L. Schmid, D. G. Thomas

with |W |r ≥ n, W = X � Y � Z, |X � Y |r ≤ n, |Y |r ≥ 1 and, for every k ≥ 0,
X � Yk �Z ∈ K. But, unfortunately, for many values of k we get L tokens with
unequal arms which are not members of K which gives a contradiction to our
assumption.

On the other hand, as pointed out by Example 2, if we do not require the
ratio between the two arms to be fixed, then the corresponding set of pictures
can be recognised by a BFA. Similarly, the characters A (if given in the form
), E, F, H, I, P (if given in the form), T, U (if given in the form) can be

recognised by BFA, if we do not require fixed proportions. In particular, this
means that , , , , , are valid characters as well. Note that the character I
plays a special role: this set of characters can only be recognised by a BFA if it
is given in the form {·k1

n � xn � ·k2
n | k1 ≤ k, k2, n ∈ N}, for some fixed constant

k ∈ N (i. e., a BFA is not able to recognise the set of all vertical lines).

However, if we insist on fixed proportions, then it can be easily shown that the
character classes mentioned above cannot be recognised by BFAs. For example, if
the length of an arm of a character (or the distance between two parallel arms)
is only allowed to grow in proportion to the length of another arm, then the
vertical or horizontal pumping lemma shows that this class of characters cannot
be recognised by a BFA.

More generally, even single diagonal lines cannot be detected by BFA, which
excludes several classes of characters from the class of BFA languages, e. g., A,
K, M, N, X. We shall prove this claim more formally, by applying the vertical
interchange lemma.

Let L be the set of pictures of diagonal lines from the upper-left corner to
the lower-right corner, i. e.,

L =


, , , , , . . .


.

If L can be recognised by a BFA, then, according to Lemma 4, there is a picture
W ∈ L with W = V1 � X � V2 � Y � V3, |X|c ≥ 1, |Y |c ≥ 1, and W ′ =
V1 � Y � V2 � X � V3 ∈ L(M). The following illustrates how this leads to a
contradiction:

W = =

V1

X

V2

Y

V3

, W ′ = .

V1

Y

V2

X

V3

We chose L to only contain square pictures with a diagonal connecting the
upper-left corner with the lower-right one for presentational reasons. In the same

Scanning Pictures The Boustrophedon Way 13

way, it can be shown that the set of single continuous diagonal lines cannot be
recognised by BFA.

7 Discussions

Scanning pictures line by line is for sure not a new invention in image processing.
We have tried to derive a formal model that does mirror this strategy. On the
one hand, we have shown that this formal model is pretty stable, as it has various
characterizations, and it is even linked to RML, one of the earliest formal models
of picture processing. On the other hand, there are quite some natural operations
under which we would hope such a model to be closed, as, for example, quarter
turns.

There are more powerful models than ours that have been proposed for pic-
ture processing, like 4-way NFAs or OTAs, see [7]. These have better closure
properties, but also much weaker decidability results; for instance, the empti-
ness problem for such devices is undecidable.

However, OTAs are related to our model in the sense that they process a
picture diagonal by diagonal, whereas our model process it row by row. The
additional power seems to come from the fact that during a computation, OTAs
label positions of the pictures by states and this labelling depends not only on the
current symbol, but also on the state labels of the upper and left neighbours (i. e.,
OTAs are special versions of cellular automata). This means that information
can be passed from top to bottom in every single column, whereas BFA can only
accumulate information of a whole row. Notice that, when we remove this option
from the way OTAs work, we arrive at a model that is possibly even closer to
ours, the only difference being the way images are scanned. Clearly, diagonal
scans can (now) detect diagonal lines, but now there is no way to detect vertical
or horizontal ones, as would be the case for RML or BFA.

Conversely, we have seen that diagonals cannot be detected by neither RML
nor BFA. Possibly, a more thorough study of different scanning schemes from the
point of view of the (typical) classes of images that can be accepted would lead
to new insights telling how images should be scanned by computers in practice.

It might be interesting to enhance the power of the automata that scan
images. As we have seen, many interesting decidability questions are already
pretty hard for finite automata; however, if we now extend our basic models, for
example, from finite automata to weak forms of counter automata, we might be
able to stay within the same complexity classes for these decision problems, while
significantly increasing the usefulness of these models. For instance, we can use
counters or linear-type grammars to recognize X-shaped letters (or diagonals).

The easiest way to deal with this might be to think about processing pictures
with automata using two or more heads in a synchronized fashion, as already
proposed in [5]. From a formal language point of view, using two heads, scanning
row by row from left to right and right to left in parallel corresponds to even-
linear languages as introduced in [1] and further generalized in [6,3,16,19].

14 H. Fernau, M. Paramasivan, M. L. Schmid, D. G. Thomas

References

1. V. Amar and G. Putzolu. On a family of linear grammars. Information and Control
(now Information and Computation), 7:283–291, 1964.

2. J. Dassow. Grammatical picture generation. Manuscript, available online, 2007.

3. H. Fernau. Even linear simple matrix languages: formal language properties and
grammatical inference. Theoretical Computer Science, 289:425–489, 2002.

4. H. Fernau and R. Freund. Bounded parallelism in array grammars used for char-
acter recognition. In P. Perner, P. Wang, and A. Rosenfeld, editors, Advances
in Structural and Syntactical Pattern Recognition (Proceedings of the SSPR’96),
volume 1121 of LNCS, pages 40–49. Springer, 1996.

5. H. Fernau, R. Freund, and M. Holzer. Character recognition with k-head finite
array automata. In A. Amin et al., editors, Proceedings of SSPR’98, volume 1451
of LNCS, pages 282–291, 1998.

6. H. Fernau and J. M. Sempere. Permutations and control sets for learning non-
regular language families. In A. L. Oliveira, editor, Grammatical Inference: Algo-
rithms and Applications, 5th International Colloquium ICGI 2000, volume 1891 of
LNCS/LNAI, pages 75–88. Springer, 2000.

7. D. Giammarresi and A. Restivo. Two-dimensional languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, Volume III, pages 215–267.
Berlin: Springer, 1997.

8. K. Krithivasan and R. Siromoney. Array automata and operations on array lan-
guages. International Journal of Computer Mathematics, 4(A):3–40, 1974.

9. K. Krithivasan and R. Siromoney. Characterizations of regular and context-free
matrices. International Journal of Computer Mathematics, 4(A):229–245, 1974.

10. K.-J. Lange and P. Rossmanith. The emptiness problem for intersections of regular
languages. In I. M. Havel and V. Koubek, editors, Mathematical Foundations of
Computer Science 1992, 17th International Symposium, MFCS’92, volume 629 of
LNCS, pages 346–354. Springer, 1992.

11. R. Niedermeier, K. Reinhardt, and P. Sanders. Towards optimal locality in mesh-
indexings. Discrete Applied Mathematics, 117:211–237, 2002.

12. Gh. Păun and A. Salomaa, editors. Grammatical Models of Multi-Agent Systems,
chapter H. Fernau, R. Freund, and M. Holzer: Regulated array grammars of finite
index, pages 157–181 (Part I) and 284–296 (Part II). London: Gordon and Breach,
1999.

13. H. Sagan. Space-Filling Curves. Springer, 1994.

14. G. Siromoney, R. Siromoney, and K. Krithivasan. Abstract families of matrices
and picture languages. Computer Graphics and Image Processing, 1:284–307, 1972.

15. G. Siromoney, R. Siromoney, and K. Krithivasan. Picture languages with array
rewriting rules. Information and Control (now Information and Computation),
22(5):447–470, 1973.

16. R. Siromoney. On equal matrix languages. Information and Control (now Infor-
mation and Computation), 14:133–151, 1969.

17. R. Siromoney and K. G. Subramanian. Space-filling curves and infinite graphs. In
H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph grammars and their applica-
tion to computer science, volume 153 of LNCS, pages 380–391, 1983.

18. K. G. Subramanian, L. Revathi, and R. Siromoney. Siromoney array grammars
and applications. International Journal of Pattern Recognition and Artificial In-
telligence, 3:333–351, 1989.

Scanning Pictures The Boustrophedon Way 15

19. Y. Takada. Learning even equal matrix languages based on control sets. In A. Naka-
mura et al., editors, Parallel Image Analysis, ICPIA’92, volume 652 of LNCS, pages
274–289. Springer, 1992.

20. I. H. Witten and B. Wyvill. On the generation and use of space-filling curves.
Software–Practice and Experience, 13:519–525, 1983.

