Pattern Matching with Variables:
A Multivariate Complexity Analysis
(Extended Abstract)

Henning Fernau and Markus L. Schmid*

Fachbereich 4 — Abteilung Informatik, Universitat Trier, D-54286 Trier, Germany,
{Fernau, MSchmid}@uni-trier.de

Abstract. In the context of this paper, a pattern is a string that con-
tains variables and terminals. A pattern a matches a terminal word w if
w can be obtained by uniformly substituting the variables of a by termi-
nal words. It is a well-known fact that deciding whether a given terminal
word matches a given pattern is an NP-complete problem. In this work,
we consider numerous parameters of this problem and for all possible
combinations of these parameters, we investigate the question whether
or not the variant obtained by bounding these parameters by constants
can be solved efficiently.

Keywords: Parameterised Pattern Matching, Function Matching, NP-
Completeness, Membership Problem for Pattern Languages, Morphisms

1 Introduction

In the present work, a detailed complexity analysis of a computationally hard
pattern matching problem is provided. The patterns considered in this context
are strings containing variables from {x1,x2,z3,...} and terminal symbols from
a finite alphabet X, e.g., a := x1 ax; bxy xs is a pattern, where a,b € Y. We say
that a word w over X matches a pattern « if and only if w can be derived from «
by uniformly substituting the variables in a by terminal words. The respective
pattern matching problem is then to decide for a given pattern and a given
word, whether or not the word matches the pattern. For example, the pattern
« from above is matched by the word u := bacaabacabbaba, since substituting
z1 and 9 in a by baca and ba, respectively, yields u. On the other hand, « is
not matched by the word v := cbcabbcbbecbe, since v cannot be obtained by
substituting the variables of o by some words.

To the knowledge of the authors, this kind of pattern matching problem
first appeared in the literature in 1979 in form of the membership problem
for Angluin’s pattern languages [3,/4] (i.e., the set of all words that match a
certain pattern) and, independently, it has been studied by Ehrenfeucht and
Rozenberg in [9], where they investigate the more general problem of deciding

* Corresponding author.

on the existence of a morphism between two given words (which is equivalent to
the above pattern matching problem, if the patterns are terminal-free, i.e., they
only contain variables).

Since their introduction by Angluin, pattern languages have been intensely
studied in the learning theory community in the context of inductive inference
(see, e.g., Angluin [4], Shinohara [28], Reidenbach [22,23] and, for a survey, Ng
and Shinohara [20]) and, furthermore, their language theoretical aspects have
been investigated (see, e.g., Angluin [4], Jiang et al. |[17], Ohlebusch and Ukko-
nen [21], Freydenberger and Reidenbach [10], Bremer and Freydenberger [6]).
However, a detailed investigation of the complexity of their membership prob-
lem, i.e., the above described pattern matching problem, has been somewhat
neglected. Some of the early work that is worth mentioning in this regard is by
Ibarra et al. [15], who provide a more thorough worst case complexity analysis,
and by Shinohara [29], who shows that matching patterns with variables can be
done in polynomial time for certain special classes of patterns. Recently, Reiden-
bach and Schmid [24,25] identify complicated structural parameters of patterns
that, if bounded by a constant, allow the corresponding matching problem to be
performed in polynomial time (see also Schmid [27]).

In the pattern matching community, independent from Angluin’s work, the
above described pattern matching problem has been rediscovered by a series of
papers. This development starts with [5] in which Baker introduces so-called
parameterised pattern matching, where a text is not searched for all occurrences
of a specific factor, but for all occurrences of factors that satisfy a given pat-
tern with parameters (i.e., variables). In the original version of parameterised
pattern matching, the variables in the pattern can only be substituted by single
symbols and, furthermore, the substitution must be injective, i. e., different vari-
ables cannot be substituted by the same symbol. Amir et al. [1] generalise this
problem to function matching by dropping the injectivity condition and in [2],
Amir and Nor introduce generalized function matching, where variables can be
substituted by words instead of single symbols and “don’t care” symbols can be
used in addition to variables. In 2009, Clifford et al. 8] considered generalised
function matching as introduced by Amir and Nor, but without “don’t care”
symbols, which leads to patterns as introduced by Angluin.

In [2], motivations for this kind of pattern matching can be found from such
diverse areas as software engineering, image searching, DNA analysis, poetry
and music analysis, or author validation. Another motivation arises from the
observation that the problem of matching patterns with variables constitutes a
special case of the matchtest for reqular expressions with backreferences (see, e. g.,
Campeanu et al. [7]), which nowadays are a standard element of most text editors
and programming languages (cf. Friedl [12]). Due to its simple definition, the
above described pattern matching paradigm also has connections to numerous
other areas of theoretical computer science and discrete mathematics, such as
(un-)avoidable patterns (cf. Jiang et al. [16]), word equations (cf. Mateescu and
Salomaa [19]), the ambiguity of morphisms (cf. Freydenberger et al. [11]) and
equality sets (cf. Harju and Karhumaéki [14]).

It is a well-known fact that — in its general sense — pattern matching with
variables is an NP-complete problem; a result that has been independently re-
ported several times (cf. Angluin [4], Ehrenfeucht and Rozenberg (9], Clifford
et al. [8]). However, there are many different versions of the problem, tailored
to different aspects and research questions. For example, in Angluin’s original
definition, variables can only be substituted by non-empty words and Shinohara
soon afterwards complemented this definition in [28] by including the empty
word as well. This marginal difference, as pointed out by numerous results, can
have a substantial impact on learnability and decidability questions of the cor-
responding classes of nonerasing pattern languages on the one hand and erasing
pattern languages on the other. If we turn from the languages point of view of
patterns to the respective pattern matching task, then, at a first glance, this
difference whether or not variables can be erased seems negligible. However, in
the context of pattern matching, other aspects are relevant, which for pattern
languages are only of secondary importance. For example, requiring variables
to be substituted in an injective way is a natural assumption for most pattern
matching tasks and bounding the maximal length of these terminal words by
a constant (which would turn pattern languages into finite languages) makes
sense for special applications (cf. Baker [5]). Hence, there are many variants of
the above described pattern matching problem, each with its individual moti-
vation, and the computational hardness of all these variants cannot directly be
concluded from the existing NP-completeness results.

For a systematic investigation, we consider the following natural parameters:
the number of different variables in the pattern, the maximal number of occur-
rences of the same variable in the pattern, the length of the terminal word, the
maximum length of the substitution words for variables and the cardinality of
the terminal alphabet. For all combinations of these parameters, we answer the
question whether or not the parameters can be bounded by (preferably small)
constants such that the resulting variant of the pattern matching problem is
still NP-complete. In addition to this, we also study the differences between
the erasing and nonerasing case, between the injective and non-injective case
and between the case where patterns may contain terminal symbols and the
terminal-free case.

Due to space constraints, the formal proofs for most of the results presented
in this paper are omitted.

2 Definitions

Let N := {1,2,3,...}. For an arbitrary alphabet A, a word (over A) is a finite
sequence of symbols from A, and ¢ is the empty word. The notation A" denotes
the set of all non-empty words over A, and A* := At U{e}. For the concatenation
of two words w1, ws we write wyws. We say that a word v € A* is a factor of a
word w € A* if there are uj,us € A* such that w = u; vug. The notation |K|
stands for the size of a set K or the length of a word K.

Let X := {x1,29,23,...} and every x € X is a variable. Let X be a finite
alphabet of terminals. Every o € (X U X)7T is a pattern and every w € X* is
a (terminal) word. For any pattern «, we refer to the set of variables in « as
var(a) and, for any variable x € var(a), |@|, denotes the number of occurrences
of z in a.

Let « be a pattern. A substitution (for) is a mapping h : var(a) — X*. For
every = € var(«), we say that x is substituted by h(x) and h(«) denotes the word
obtained by substituting every occurrence of a variable x in a by h(x) and leaving
the terminals unchanged. If, for every « € var(«), h(x) # €, then h is nonerasing
(h is also called erasing if it is not non-erasing). If, for all 2,y € var(a), x # y
and h(x) # e # h(y) implies h(z) # h(y), then h is E-injectz’v(ﬂ and h is called
injective if it is E-injective and, for at most one = € var(a), h(x) = €.

Ezxample 1. Let § := x1azsbxyxi o be a pattern, let u := bacbabbacb and
let v := abaabbababab. It can be verified that h(8) = u, where h(xz1) = bacb,
h(ze) = € and g(8) = v, where g(x1) = g(x3) = ab. Furthermore, § cannot be
mapped to u by a nonerasing substitution and g cannot be mapped to v by an
injective substitution.

If the type of substitution is clear from the context, then we simply say that a
word w matches a to denote that there exists such a substitution h with h(a) =
w. We can now formally define the pattern matching problem with variables,
denoted by PMV, which has informally been described in Section

PMV
Instance: A pattern o and a word w € X*.
Question: Does there exist a substitution h with h(a) = w?

As explained in Section [I} the above problem exists in various contexts with
individual terminology. Since we consider the problem in a broader sense, we
term it pattern matching problem with variables in order to distinguish it —
and all its variants to be investigated in this paper — from the classical pattern
matching paradigm without variables.

Next, we define several parameters of PMV. To this end, let a be a pattern,
let w be a word and let h be a substitution for a.

= Plvar(a)| ‘= |V8I(OZ)‘,

= Plaf, = max{|al, | z € var(a)},
= Plw| T |w|a

= pz =12,

= Pl = max{|h(z)| | € var(a)}.

The restricted versions of the problem PMV are now defined by P-[Z, I, T]-PMV,
where P is a list of parameters that are bounded, Z € {E,NE} denotes whether
we are considering the erasing or nonerasing case, T' € {tf, n-tf} denotes whether
or not we require the patterns to be terminal-free and I € {inj, n-inj} denotes

! 'We use E-injectivity, since if an erasing substitution is injective in the classical sense,
then it is “almost” nonerasing, i.e., only one variable can be erased.

whether or not we require the substitution to be injective (more precisely, if
Z = NE, then I = inj denotes injectivity, but if Z = E, then I = inj denotes E-
injectivity). Hence, [plc;‘z,pr%', pfﬁ(x”}—[NE,n—inj,tf]— PMYV denotes the problem
to decide for a given terminal-free pattern a and a given word w € X* with
max{|a|; | * € var(a)} < ¢; and |X| < c¢o, whether or not there exists a
nonerasing substitution h (possibly non-injective) that satisfies max{|h(z)| |
x € var(a)} < e3 and h(a) = w, where ¢, co and ¢ are some constants.

The contribution of this paper is to show for each of the 256 individual
problems P-[Z, I, T]-PMV whether or not there exist constants such that if the
parameters in P are bounded by these constants, this version of PMV is still
NP-complete or whether it can be solved in polynomial time. To this end, we
first summarise all the respective known results from the literature and then we
close the remaining gaps.

3 Known Results and Preliminary Observations

In this section, we briefly summarise those variants of PMV, for which NP-
completeness or membership in P has already been established. To this end, we
first informally describe an obvious and simple brute-force algorithm that solves
the pattern matching problem with variables. For some instance (a, w) of PMV
with m := | var(«)|, we simply enumerate all tuples (ui,us, ..., u,), where, for
every i, 1 <1 < m, u; is a factor of w. Then, for each such tuple (uy,ua, ..., un),
we check whether h(a) = w, where h is defined by h(z;) := wu;, 1 < ¢ < m. This
procedure can be performed in time exponential only in m and, furthermore,
it is generic in that it works for any variant of PMV. This particularly implies
that every version of PMV, for which p|yar(a)| is restricted, can be solved in
polynomial time.

Next, we note that in the nonerasing case, a restriction of py,| implicitly
bounds p|yar(a)| @s well and, thus, all the corresponding versions of the pattern
matching problem with variables can be solved efficiently. Moreover, in [13],
Geilke and Zilles note that if p|,,| < ¢, for some constant ¢, then this particularly
implies that the number of variables that are not erased is bounded by c as
well. As demonstrated in [13], this means that also for the erasing case PMV
can be solved in polynomial time if the length of the input word is bounded
by a constant. Consequently, every version of PMV, for which p|yar(a)| OF pjw|
is restricted, can be solved in polynomial time; thus, in the following, we shall
neglect these two parameters and focus on the remaining 3 parameters pjq/,,
piz) and pin())-

In the next table, we briefly summarise those variants of PMV, for which
NP-completeness has already been established. A numerical entry denotes the
constant bound of a parameter and “—” means that a parameter is unrestricted.

| [E/NE[inj / n-inj[tf / n-tf]|h(2)[][a]o]| Z[[[Complexity]
1] NE | n-inj n-tf [3 [- [2] NP-C [4]]
2|E, NE| n-inj tf 3 | -2 NP-C|9]
3| NE | n-inj tf 2 | - [2] NP-CJg]
4 NE inj tf — |~]2 NP-Cg]
5| NE inj tf 2 | [[[NP-C§]
6| E n-inj | ntf | — | 2 [2|[NP-C[26]]

The main contribution of this paper is to close the gaps that are left open in
the above table. Before we present our main results in this regard, we conclude
this section by taking a closer look at the parameters p|,|, and p| 5. As indicated
by rows 1 to 4 and row 6, restricting p| x| does not seem to help to solve PMV
efficiently. In [26] it is shown that even if we additionally require the number of
occurrences per variable to be bounded by 2, then PMV is still NP-complete.
However, regarding these two parameters, we seem to have reached the boundary
between P and NP-completeness, since it can be easily shown that PMV can be
solved in polynomial time if parameter px or pj|, is bounded by 1 (see, e.g.,
Schmid [27]).

4 Main Results

In this section, we investigate the complexity of all the variants of the pattern
matching problem with variables that are not already covered by the table pre-
sented in the previous section. Most of these variants turn out to be NP-complete.
The general proof technique used to establish these results is illustrated in Sec-
tion |5l We shall now first consider the non-injective case, i.e., we consider the
problems P-[Z, n-inj, T]-PMV first and the problems P-[Z, inj, T]-PMV later on.

4.1 The Non-Injective Case

All the results of this section are first presented in a table of the form already
used in the previous section and then we discuss them in more detail.

—~

[E /NE[inj / n-injtf / n-tf][2()|[|a[|| Z]| Complexity]

E n-inj n-tf 1 22 NP-C
NE n-inj n-tf 3 2 (2 NP-C
E n-inj tf 1 8 |2 NP-C
NE n-inj tf 3 3|4 NP-C

As mentioned in Section 3| Clifford et al. show in [8] that the nonerasing,
terminal-free and non-injective case of the pattern matching problem with vari-
ables is NP-complete, even if additionally the parameters p;x and pjp(,) are
bounded. By the rows 2 and 4 of the above table, we strengthen this result by
stating that the NP-completeness is preserved, even if in addition also p|,, is
bounded and this holds both for the terminal-free and non-terminal-free case.

However, we are only able to prove that these results hold if the parameter p|,
is bounded by 3 and the case where p|,|, is bounded by 2 is left open.

With respect to the erasing case, i.e., rows 1 and 3 of the above table, we
observe a surprising situation that deserves to be discussed in a bit more detail.
To this end, we introduce a special case of a substitution. A substitution h (for
a pattern «) is called a renaming if every variable of « is either erased by h or
substituted by a single symbol, i.e., for every x € var(a), |h(z)| < 1. Now row 1
shows that the erasing, non-injective and non-terminal-free version of the pattern
matching problem with variables remains NP-complete, even if both p|,|, and
p| x| are bounded by 2 and the substitution needs to be a renaming. This is a very
restricted version of the pattern matching problem with variables, which seems
to be located directly on the border between NP-completeness and polynomial
time solvability, since the nonerasing version of this problem is trivially solvable
in linear time, the parameter pj(z)| is already bounded in the strongest possible
sense, if p|4|, or p| x| is bounded by 1 instead of 2, then, as mentioned in Section
the problem becomes polynomial time solvable and, in the next section, we shall
see that the injective version is in P as well.

With respect to the terminal-free case (row 3 of the table), we are only able to
show NP-completeness if the parameter p|,|, is bounded by 8 instead of 2. This
version of the pattern matching problem with variables can be rephrased as a
more general problem on strings: given two strings v and v, can u be transformed
into v in such a way that every symbol of w is either erased, substituted by a
or substituted by b? This problem is NP-complete, even if every symbol in u
occurs at most 8 times. It is open, however, whether it is still NP-complete if at
most two occurrences per symbol are allowed.

We conclude this section by pointing out that the pattern matching problem
that Baker considers in [5], and for which she presents efficient algorithms, in
fact relies on the problem of finding a renaming between two words. However,
in [5] only nonerasing and injective renamings are considered and with our above
result we can conclude that Baker’s pattern matching problem most likely cannot
be solved in polynomial time if it is generalised to erasing and non-injective
renamings.

4.2 The Injective Case

A main difference between the complexity of the injective and non-injective cases
is that in the injective case, bounding p x| and pj; () already yields polynomial
time solvability (see Theorem [1| below), whereas the non-injective case remains
NP-complete, even if we additionally bound pj,|, (as stated in Section .
Informally speaking, this is due to the fact that if p| x| and pjp(,) are bounded
by some constants, then the number of words variables can be substituted with
is bounded by some constant, say ¢, as well. Now if we additionally require
injectivity, then the number of variables that are substituted with non-empty
words is bounded by ¢, too, which directly implies the polynomial time solvability
for the nonerasing case. In order to extend this result to the erasing case, we
apply a technique similar to the one used by Geilke and Zilles in [13].

Theorem 1. Let ky,ks € N, let Z € {E,NE} and let T € {tf,n-tf}. The prob-
lem [p%s {2y)-1Z, inj, T]-PMV s in P.

Proof. Since the case Z = E implies the case Z = NE, we shall only prove the
former.

Let a be a pattern and let w be a word over X' := {aj,as,...,a, }- Let S be
an arbitrary subset of var(a). We say that S satisfies condition (x) if and only
if there exists an E-injective substitution h with h(a) = w, 1 < |h(z)| < ko, for
every z € S, and h(x) = ¢, for every x € var(a) \ S. For any set S C var(«), it
can be checked in time exponential in | S|, whether S satisfies condition (x). More
precisely, this can be done in the following way. First, we obtain a pattern 5 from
a by erasing all variables in var(a) \ S. Then we use a brute-force algorithm to
check whether or not there exists an injective nonerasing substitution h with
h(8) = w and 1 < |h(z)| < ko, € var(f), which can be done in time O(k‘gsl).

For the sake of convenience, we define k' := ko x k’fz. ‘We observe that there are
O(k") non-empty words over {aj,as,...,ak, } of length at most ky. This implies
that every substitution h that maps more than &’ variables to non-empty words
of length at most ko is necessarily not E-injective. So, for every set S C var(«),
if |S| > k', then S does not satisfy condition (x). Consequently, there exists an
E-injective substitution h with h(a) = w, |h(z)| < kq, for every x € var(a),
if and only if there exists a set S C var(a) with |S| < &’ and S satisfies the
condition ().

We conclude that we can solve the problem stated in the theorem by enu-
merating all possible sets S C var(a) with |S| < k' and, for each of these sets,
checking whether they satisfy condition (x). Since the number of sets S C var(«)
with |S] < K is

K’

y
> <|Var.(a)|) <3 Jvar(a)[< (K + 1) var(@)* = O(| var(a)),

: 1 :
=0 =0
the runtime of this procedure is exponential only in &’; thus, since %’ is a constant,

it is polynomial. a

On the other hand, as pointed out by the following table, for all other possi-
bilities to bound some of the parameters p| x|, o, and pjx(z)|, without bounding
both p|x| and pj; ()| at the same time, we can show NP-completeness:

[E / NE[inj / rT—inj\tf/n—tf\\h(x)|\|a|x\|E|HCOmplexity‘

E inj n-tf 5 2 NP-C
NE inj n-tf 19 | 2 | - NP-C
E, NE inj n-tf - 22 NP-C
E, NE inj tf 19 | 4 | - NP-C
E, NE| inj tf - 915 NP-C

With respect to the injective case (and in contrast to the non-injective case),
we are not able to conclude any results about renamings. In particular, the most

interesting open question in this regard is whether or not the following problem
is NP-complete:

Instance: A pattern « and a word w € X*.
Question: Does there exist an E-injective renaming h with h(a) = w?

We conjecture that this question can be answered in the affirmative.

In order to conclude this section, we wish to point out that for every variant of
the pattern matching problem with variables that is not explicitly mentioned in
the above tables, either NP-completeness or membership in P is directly implied
by one of the results presented in this section or Section

5 Proof Techniques

In this section, we give a sketch of the main proof technique for the hardness
results presented in Section[d To this end, we first define a graph problem, which
is particularly suitable for our purposes.

Let G = (V, E) be a graph with V := {v1,v9,...,v,}. The neighbourhood of
a vertex v € V is the set Ng(v) := {u | {v,u} € E} and Ng[v] := Ng(v) U{v} is
called the closed neighbourhood of v. If, for some k € N, |[Ng(v)| = k, for every
v € V, then G is k-reqular. A perfect code for G is a subset C C V with the
property that, for every v € V., |[Ng[v] N C| = 1. Next, we define the problem to
decide whether or not a given 3-regular graph has a perfect code:

3R-PERFECT-CODE
Instance: A 3-regular graph G.
Question: Does G contain a perfect code?

In [18], Kratochvil and Kfivdnek prove the problem 3R-PERFECT-CODE
to be NP-complete:

Theorem 2 (Kratochvil and K¥ivanek [18]). 3R-PERFECT-CODE is NP-
complete.

All the NP-completeness results of Section [can be proved by reducing
3R-PERFECT-CODE to the appropriate variant of PMV. However, these reduc-
tions must be individually tailored to these different variants. As an example, we
give a reduction from 3R-PERFECT-CODE to [pfh(w)‘ , pfalz]—[E, inj, n-t{]-PMV,
which implies the result stated in row 1 of the table presented in Section [4.2

Let G = (V, E) with V := {v, vs,...,v,} be a 3-regular graph and, for every
i, 1 <i < mn,let N; be the closed neighbourhood of v;. We transform the graph G
into a pattern o and a word w over X' := {a;,¢;, #, | 1 <i<n,1 <j<2n-1},
such that, for every = € var(a), |al; < 2. Now, for any i, 1 < i < n, let
Nj,, Nj,, Nj,, N;, be exactly the closed neighbourhoods that contain vertex v;.
We transform vertex v; into the pattern variables x;j , i j,, Ti s, Ti j,; thus,
our interpretation shall be that variable x;; refers to vertex v; in the closed
neighbourhood of vertex v;.

For every i, 1 < i < n, the closed neighbourhood N; := {v;,,vj,,v,,v;,} is
transformed into

Bi = Ty i Tja i Tja i Tja,i and
U; ‘= a; .
Furthermore, for every i, 1 < i < n, we define
— / d
Vi 7= Zi G Ti gy Tijy Tijg Tijy Ci 25 A1
Vi 1= € ¢ g, g, aj, aj, C
where N; = {v;,,vj,,,, v, }- Finally, we define

Q= 61 #1 52 #2 e #nfl Bn #n Y1 #n+1 Y2 #n+2 e #2n71 Tn and
W= Uy FF1 U2 FF2 - Fn—1 Un Fn V1 Fnt1 V2 Fng2 - Fon—1Un -

Every variable z;,z;, 1 < i < n, has only one occurrence in «. For every i,
1 <7 < n, and every j with v; € IV;, variable z;; has exactly one occurrence in
B; and exactly one occurrence in ;. Thus, for every x € var(a), |of, < 2.

In order to see that the existence of an E-injective substitution h for o with
h(a) = w and |h(z)| < 5 implies the existence of a perfect code for G, we first
observe that, for any substitution h with h(a) = w, h(8;) = u; and h(y;) = v,
1 <7 < n, is satisfied. This implies that, for every 7, 1 < i < n, exactly one of
the variables z;, ;, 1 <1 <4, where N; = {v;,,vj,,v,,,vj,}, is mapped to a; and
the other three variables are erased. Furthermore either each of the variables
Z; 5, 1 <1 <4, is mapped to a;, or all these variables are erased. This directly
translates into the situation that it is possible to pick exactly one vertex from
each neighbourhood. The converse statement, i.e., the existence of a perfect
code implies the existence of such a substitution A, follows from the observation
that for the variables x; ; we can define h as induced by the perfect code and,
for every i, 1 < i < n, either h(z;) := ¢; and h(z]) := € or h(z;) := € and
h(z}) :== a;, aj, a;, a;, ¢;, depending on whether or not vertex v; is a member of
the perfect code.

We wish to point out that the above reduction strongly relies on the possi-
bility to erase variables and to have terminal symbols in the pattern; thus, as
pointed out by the following explanations, converting it to the nonerasing or the
terminal-free case is non-trivial. The general idea of extending our reduction to
the terminal-free case is that instead of using terminals # in the pattern, we
use variables that are forced to be substituted by #. Especially for the erasing
case, this is technically challenging and, furthermore, if we use an unbounded
number of occurrences of the same terminal symbol in the pattern, then it is
difficult to maintain the restriction on the number of variable occurrences and
injectivity at the same time. In the above reduction, we also use the possibility
of having an unbounded number of terminal symbols. Hence, if parameter p| | is
bounded, then instead of using arbitrarily many different symbols a, as, ..., a,,
we either have to use only one symbol a for different variables, which destroys
the injectivity, or we have to encode a single symbol a; by a string ba’b, which
breaks the bound on parameter pjp()|-

6 Future Research Directions

In this paper, for every variant P-[Z, I, T]-PMYV of the pattern matching problem
with variables, we either show that bounding the parameters by any constants
leads to polynomial time solvability or that the parameters can be bounded
by some constants, such that P-[Z, I, T|-PMV is NP-complete. Although for the
results of the latter type we are mostly able to present rather small constants, we
do not provide a full dichotomy result for the class of problems P-[Z, I, T]-PMV.

As pointed out in Section [pllh(m)l,pfa‘x,pfxl]—[E,?—inj,n—tf]—PM.V is an
example for an NP-complete version of the pattern matching problem with vari-
ables for which we provable know that any further restriction — except to the
terminal-free case, which is open — makes the problem polynomial time solvable.
On the other hand, we do not know when exactly the problem [pf’h(z)l , pf’a‘z , ple]—
[NE, n-inj, t{]-PMV shifts from NP-completeness to polynomial time solvability
when the constants are decreased.

Consequently, possible further research is to completely determine these bor-
derlines between NP-completeness and P with respect to the pattern matching
problem with variables.

References

1. A. Amir, Y. Aumann, R. Cole, M. Lewenstein, and E. Porat. Function matching;:
Algorithms, applications, and a lower bound. In Proc. 30th International Collo-
quium on Automata, Languages and Programming, ICALP 2003, volume 2719 of
Lecture Notes in Computer Science, pages 929-942, 2003.

2. A. Amir and I. Nor. Generalized function matching. Journal of Discrete Algo-
rithms, 5:514-523, 2007.

3. D. Angluin. Finding patterns common to a set of strings. In Proc. 11th Annual
ACM Symposium on Theory of Computing, STOC 1979, pages 130-141, 1979.

4. D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46—-62, 1980.

5. B. S. Baker. Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences, 52:28-42, 1996.

6. J. Bremer and D. D. Freydenberger. Inclusion problems for patterns with a
bounded number of variables. In Proc. 14th International Conference on Develop-
ments in Language Theory, DLT 2010, volume 6224 of Lecture Notes in Computer
Science, pages 100—111, 2010.

7. C. Campeanu, K. Salomaa, and S. Yu. A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14:1007-1018,
2003.

8. R. Clifford, A. W. Harrow, A. Popa, and B. Sach. Generalised matching. In Proc.
16th International Symposium on String Processing and Information Retrieval,
SPIRE 2009, volume 5721 of Lecture Notes in Computer Science, pages 295-301,
20009.

9. A. Ehrenfeucht and G. Rozenberg. Finding a homomorphism between two words
is NP-complete. Information Processing Letters, 9:86-88, 1979.

10. D. D. Freydenberger and D. Reidenbach. Bad news on decision problems for
patterns. Information and Computation, 208:83-96, 2010.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

D. D. Freydenberger, D. Reidenbach, and J. C. Schneider. Unambiguous morphic
images of strings. International Journal of Foundations of Computer Science,
17:601-628, 2006.

J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, third
edition, 2006.

M. Geilke and S. Zilles. Learning relational patterns. In Proc. 22nd International
Conference on Algorithmic Learning Theory, ALT 2011, volume 6925 of Lecture
Notes in Computer Science, pages 8498, 2011.

T. Harju and J. Karhuméki. Morphisms. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 7, pages 439-510. Springer, 1997.
O. Ibarra, T.-C. Pong, and S. Sohn. A note on parsing pattern languages. Pattern
Recognition Letters, 16:179-182, 1995.

T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. International Journal of Computer Mathematics, 50:147-163,
1994.

T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns.
Journal of Computer and System Sciences, 50:53—63, 1995.

J. Kratochvil and M. Krivdnek. On the computational complexity of codes in
graphs. In Proc. 18th Symposium on Mathematical Foundations of Computer Sci-
ence, MFCS 1988, volume 324 of Lecture Notes in Computer Science, pages 396—
404, 1988.

A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern languages.
RAIRO Informatique théoretique et Applications, 28:233-253, 1994.

Y. K. Ng and T. Shinohara. Developments from enquiries into the learnability of
the pattern languages from positive data. Theoretical Computer Science, 397:150—
165, 2008.

E. Ohlebusch and E. Ukkonen. On the equivalence problem for E-pattern lan-
guages. Theoretical Computer Science, 186:231-248, 1997.

D. Reidenbach. A non-learnable class of E-pattern languages. Theoretical Com-
puter Science, 350:91-102, 2006.

D. Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397:166-193, 2008.

D. Reidenbach and M. L. Schmid. A polynomial time match test for large classes
of extended regular expressions. In Proc. 15th International Conference on Im-
plementation and Application of Automata, CIAA 2010, volume 6482 of Lecture
Notes in Computer Science, pages 241-250, 2011.

D. Reidenbach and M. L. Schmid. Patterns with bounded treewidth. In Proc. 6th
International Conference on Language and Automata Theory and Applications,
LATA 2012, volume 7183 of Lecture Notes in Computer Science, pages 468-479,
2012.

M. L. Schmid. A note on the complexity of matching patterns with variables.
Information Processing Letters. Submitted.

M. L. Schmid. On the Membership Problem for Pattern Languages and Related
Topics. PhD thesis, Department of Computer Science, Loughborough University,
2012.

T. Shinohara. Polynomial time inference of extended regular pattern languages.
In Proc. RIMS Symposium on Software Science and Engineering, volume 147 of
Lecture Notes in Computer Science, pages 115-127, 1982.

T. Shinohara. Polynomial time inference of pattern languages and its application.
In Proc. 7th IBM Symposium on Mathematical Foundations of Computer Science,
pages 191-209, 1982.

	Pattern Matching with Variables: A Multivariate Complexity Analysis 4pt (Extended Abstract)
	Introduction
	Definitions
	Known Results and Preliminary Observations
	Main Results
	The Non-Injective Case
	The Injective Case

	Proof Techniques
	Future Research Directions

