
FO-Query Enumeration over SLP-Compressed
Structures of Bounded Degree

Markus Lohrey Sebastian Maneth Markus L. Schmid

University of Siegen University of Bremen Humboldt University Berlin

Germany Germany Germany

MFCS 2025

FO-Query Evaluation

First order formula: ψ(x1, x2, . . . , xk︸ ︷︷ ︸
free variables

)

Relational structure: U = (U︸︷︷︸
universe

,R1, . . . ,Rs︸ ︷︷ ︸
relations

, c1, . . . , ct︸ ︷︷ ︸
constant

).

Result set: ψ(U) = {(a1, . . . , ak) ∈ Uk | U |= ψ(a1, . . . , ak)}.

; Common abstraction of �SQL-queries over relational databases�.

Data Complexity

We consider ψ as constant, and measure complexity only in |U|.

For simplicity, let's talk about directed graphs instead of structures.

Everything said for graphs also holds for general structures!

FO-Query Evaluation

First order formula: ψ(x1, x2, . . . , xk︸ ︷︷ ︸
free variables

)

Relational structure: U = (U︸︷︷︸
universe

,R1, . . . ,Rs︸ ︷︷ ︸
relations

, c1, . . . , ct︸ ︷︷ ︸
constant

).

Result set: ψ(U) = {(a1, . . . , ak) ∈ Uk | U |= ψ(a1, . . . , ak)}.

; Common abstraction of �SQL-queries over relational databases�.

Data Complexity

We consider ψ as constant, and measure complexity only in |U|.

For simplicity, let's talk about directed graphs instead of structures.

Everything said for graphs also holds for general structures!

FO-Query Evaluation

First order formula: ψ(x1, x2, . . . , xk︸ ︷︷ ︸
free variables

)

Relational structure: U = (U︸︷︷︸
universe

,R1, . . . ,Rs︸ ︷︷ ︸
relations

, c1, . . . , ct︸ ︷︷ ︸
constant

).

Result set: ψ(U) = {(a1, . . . , ak) ∈ Uk | U |= ψ(a1, . . . , ak)}.

; Common abstraction of �SQL-queries over relational databases�.

Data Complexity

We consider ψ as constant, and measure complexity only in |U|.

For simplicity, let's talk about directed graphs instead of structures.

Everything said for graphs also holds for general structures!

FO-Query Evaluation

First order formula: ψ(x1, x2, . . . , xk︸ ︷︷ ︸
free variables

)

Relational structure: U = (U︸︷︷︸
universe

,R1, . . . ,Rs︸ ︷︷ ︸
relations

, c1, . . . , ct︸ ︷︷ ︸
constant

).

Result set: ψ(U) = {(a1, . . . , ak) ∈ Uk | U |= ψ(a1, . . . , ak)}.

; Common abstraction of �SQL-queries over relational databases�.

Data Complexity

We consider ψ as constant, and measure complexity only in |U|.

For simplicity, let's talk about directed graphs instead of structures.

Everything said for graphs also holds for general structures!

FO-Query Evaluation

First order formula: ψ(x1, x2, . . . , xk︸ ︷︷ ︸
free variables

)

Directed graph: G = (V ,E).

Result set: ψ(G) = {(a1, . . . , ak) ∈ V k | G |= ψ(a1, . . . , ak)}.

; Common abstraction of �SQL-queries over relational databases�.

Data Complexity

We consider ψ as constant, and measure complexity only in |U|.

For simplicity, let's talk about directed graphs instead of structures.

Everything said for graphs also holds for general structures!

A More Practical Perspective: Enumeration

ψ(x1, . . . , xk) G

Dψ,G

Preprocessing

Enumeration

ψ(G) = (a, b, a, c, . . .)

(d, b, d, a, . . .)

(b, d, c, c, . . .)

+

A More Practical Perspective: Enumeration

ψ(x1, . . . , xk) G

Dψ,G

Preprocessing

Enumeration

ψ(G) = (a, b, a, c, . . .)

(d, b, d, a, . . .)

(b, d, c, c, . . .)

delay

delay

+

A More Practical Perspective: Enumeration

ψ(x1, . . . , xk) G

Dψ,G

Preprocessing

Enumeration

ψ(G) = (a, b, a, c, . . .)

(d, b, d, a, . . .)

(b, d, c, c, . . .)

delay

delay

O(|G|)

O(1)

O(1)

+

(linear in data complexity)

(constant in data complexity)

(constant in data complexity)

FO-Query Evaluation Over Degree Bounded Structures

Theorem
Durand, Grandjean, ACM TOCL 2007

Kazana, Segou�n, LMCS 2011

Let d be a constant. FO-queries over graphs of degree at most d
can be enumerated with linear preprocessing and constant delay.

Without the degree bound this is most likely not possible!

Other approaches for linear preprocessing and constant delay:

Restrict the class of structures
(e.g. low degree, bounded expansion, nowhere dense)

Restrict the class of queries
(e.g. acyclic conjunctive queries)

FO-Query Evaluation Over Degree Bounded Structures

Theorem
Durand, Grandjean, ACM TOCL 2007

Kazana, Segou�n, LMCS 2011

Let d be a constant. FO-queries over graphs of degree at most d
can be enumerated with linear preprocessing and constant delay.

Without the degree bound this is most likely not possible!

Other approaches for linear preprocessing and constant delay:

Restrict the class of structures
(e.g. low degree, bounded expansion, nowhere dense)

Restrict the class of queries
(e.g. acyclic conjunctive queries)

FO-Query Evaluation Over Degree Bounded Structures

Theorem
Durand, Grandjean, ACM TOCL 2007

Kazana, Segou�n, LMCS 2011

Let d be a constant. FO-queries over graphs of degree at most d
can be enumerated with linear preprocessing and constant delay.

Without the degree bound this is most likely not possible!

Other approaches for linear preprocessing and constant delay:

Restrict the class of structures
(e.g. low degree, bounded expansion, nowhere dense)

Restrict the class of queries
(e.g. acyclic conjunctive queries)

Algorithmics on Compressed Data

General idea

Find algorithms that solve problems directly on compressed
instances (without decompressing the instance).

Enumeration in the Compressed Setting

ψ(x1, . . . , xk) compression D of G

Dψ,D

Preprocessing

Enumeration

ψ(G) = (a, b, a, c, . . .)

(d, b, d, a, . . .)

(b, d, c, c, . . .)

delay

delay

O(|D|)

O(1)

O(1)

+

(linear in data complexity . . .

. . . but wrt. the compressed size)

(constant in data complexity)

(constant in data complexity)

Straight-Line Programs (SLPs)

Main Idea

Compress input I as a context-free grammar G that describes
exactly this object, i. e., L(G) = {I} (or val(G) = I for short).

SLP-framework is very well-established for strings:

w = a a b b a b a a b a a b b a b

Straight-Line Programs (SLPs)

Main Idea

Compress input I as a context-free grammar G that describes
exactly this object, i. e., L(G) = {I} (or val(G) = I for short).

SLP-framework is very well-established for strings:

w = a a b b a b a a b a a b b a b

Straight-Line Programs (SLPs)

Main Idea

Compress input I as a context-free grammar G that describes
exactly this object, i. e., L(G) = {I} (or val(G) = I for short).

SLP-framework is very well-established for strings:

w = a a b b a b a a b a a b b a b

Straight-Line Programs (SLPs)

Main Idea

Compress input I as a context-free grammar G that describes
exactly this object, i. e., L(G) = {I} (or val(G) = I for short).

SLP-framework is very well-established for strings:

w = a a b b a b a a b a a b b a b

S → C B C, B → aA

C → B bA, A → a b

Straight-Line Programs (SLPs)

Main Idea

Compress input I as a context-free grammar G that describes
exactly this object, i. e., L(G) = {I} (or val(G) = I for short).

SLP-framework is very well-established for strings:

w = a a b b a b a a b a a b b a b

S → C B C, B → aA

C → B bA, A → a b

B

A

a b

S

C

SLPs for Graphs

u v

w x

C

SLPs for Graphs

u v

w x

1

2

C

contact

nodes

SLPs for Graphs

u v

w x

1

2

A

B

1

1

2

3

2C

references

SLPs for Graphs

u v

w x

1

2

A

B

1

1

2

3

2C A

1 2

p

q r

s t

D

1

2

SLPs for Graphs

u v

w x

1

2

A

B

1

1

2

3

2C A

1 2

p

q r

s t

D

1

2

SLPs for Graphs

u v

w x

1

2

B

1

3

2C A

1 2

p

q r

s t

D

1

2

p

q r

D

1

2

SLPs for Graphs

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

Graph SLP D

SLPs for Graphs

val(B)
1 2

Graph SLP D

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

SLPs for Graphs

val(B)
1 2

val(B)
1 2

val(A)
1

Graph SLP D

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

SLPs for Graphs

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2
val(B)

1 2
val(B)

1 2

val(S)

u

v

Graph SLP D

= val(D)

val(A)
1

SLPs for Graphs

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2
val(B)

1 2
val(B)

1 2

u

v

S

A

B

1

2
3

1

dag(D)

Graph SLP D

val(S)

= val(D)

val(A)
1

What we want . . .

ψ(x1, . . . , xk)
graph SLP D such that
eval(D) has degree at most d

Dψ,D

Preprocessing

Enumeration

ψ(eval(D)) = (a, b, a, c, . . .)

(d, b, d, a, . . .)

(b, d, c, c, . . .)

delay

delay

O(|D|)

O(1)

O(1)

+

(linear in data complexity . . .

. . . but wrt. the compressed size)

(constant in data complexity)

(constant in data complexity)

. . . and the problem with that.

Theorem Lohrey, JCSS 2012

▶ There is a �xed FO-formula for which model checking for
SLP-compressed graphs is �intractable�.

▶ Model checking for SLP-compressed graphs is in NL for every
�xed FO-formula, if the SLP has the apex property.

The Apex Property

u v

w x

1

2

A

B

1

1

2

3

2C

The Apex Property

u v

w x

1

2

A

B

1

1

2

3

2C

not apex!

The Apex Property

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

apex!

Our Main Result

ψ(x1, . . . , xk)
apex graph SLP D such that
eval(D) has degree at most d

Dψ,D

Preprocessing

Enumeration

ψ(eval(D)) = (a, b, a, c, . . .)

(d, b, d, a, . . .)

(b, d, c, c, . . .)

delay

delay

O(|D|)

O(1)

O(1)

+

(linear in data complexity . . .

. . . but wrt. the compressed size)

(constant in data complexity)

(constant in data complexity)

Related Results

Similar results in the recent literature:

▶ MSO-query enumeration on SLP-compressed strings
[S., Schweikardt, PODS 2021/2022]
[Munoz, Riveros, ICDT 2023]

▶ MSO-query enumeration on SLP-compressed trees
[Lohrey, S., PODS 2024]

Proof Roadmap

Step 1: Reduction to a simpler enumeration problem.

Standard application of Gaifman-locality of FO-logic

Step 2: Solve this problem in the uncompressed setting.

Kazana, Segou�n, LMCS 2011

Step 3: Extension to the SLP-compressed setting.

Our contribution

Proof Roadmap

Step 1: Reduction to a simpler enumeration problem.

Standard application of Gaifman-locality of FO-logic

Step 2: Solve this problem in the uncompressed setting.

Kazana, Segou�n, LMCS 2011

Step 3: Extension to the SLP-compressed setting.

Our contribution

Proof Roadmap

Step 1: Reduction to a simpler enumeration problem.

Standard application of Gaifman-locality of FO-logic

Step 2: Solve this problem in the uncompressed setting.

Kazana, Segou�n, LMCS 2011

Step 3: Extension to the SLP-compressed setting.

Our contribution

Proof Roadmap

Step 1: Reduction to a simpler enumeration problem.

Standard application of Gaifman-locality of FO-logic

Step 2: Solve this problem in the uncompressed setting.

Kazana, Segou�n, LMCS 2011

Step 3: Extension to the SLP-compressed setting.

Our contribution

Step 1 � Reduction (ρ-Neighbourhood Types)

r , ρ ∈ N with r ≤ ρ are some �xed constants

B

1

2

4
3

≤
ρ

center

distinguished nodes

Step 1 � Reduction (ρ-Neighbourhood Types)

r , ρ ∈ N with r ≤ ρ are some �xed constants

B G

1

2

4
3

≤
ρ

v

Step 1 � Reduction (ρ-Neighbourhood Types)

r , ρ ∈ N with r ≤ ρ are some �xed constants

B G

1

2

4
3

≤
ρ

≤
ρ

v

∼ B

Step 1 � Reduction (ρ-Neighbourhood Types)

r , ρ ∈ N with r ≤ ρ are some �xed constants

B G

1

2

4
3

≤
ρ

≤
ρ

v

u

w

x

∼ B

Step 1 � Reduction (ρ-Neighbourhood Types)

r , ρ ∈ N with r ≤ ρ are some �xed constants

B G

1

2

4
3

≤
ρ

≤
ρ

v

u

w

x

∼ B

≤
ρ

∼ B

≤
ρ

∼ B

≤
ρ

∼ B

≤
ρ

∼ B

≤
ρ

∼ B

Step 1 � Reduction (ρ-Neighbourhood Types)

r , ρ ∈ N with r ≤ ρ are some �xed constants

B G

1

2

4
3

≤
ρ

≤
ρ

v

u

w

x

∼ B

≤
ρ

∼ B

≤
ρ

∼ B

≤
ρ

∼ B

≤
ρ

∼ B

≤
ρ

∼ B

Such nodes will be called B-nodes

Step 1 � Reduction (Admissible Tuples)

G
ρ-neighbourhood types:

B1,B2, . . . ,Bk

B1

B2

B3

Step 1 � Reduction (Admissible Tuples)

u

v

w

G
ρ-neighbourhood types:
B1,B2, . . . ,Bk

admissible tuple: (u, w, v)

B1

B2

B3

Step 1 � Reduction (Admissible Tuples)

u

v

w

∼ B3

∼ B1

∼ B2

G
ρ-neighbourhood types:
B1,B2, . . . ,Bk

admissible tuple: (u, w, v)

B1

B2

B3

Step 1 � Reduction (Admissible Tuples)

u

v

w

> 2r + 1
> 2r + 1

> 2r + 1

> 2r + 1

∼ B3

∼ B1

∼ B2

G

B1

B2

B3

ρ-neighbourhood types:
B1,B2, . . . ,Bk

admissible tuple: (u, w, v)

Step 1 � Reduction (Admissible Tuples)

z

y

x

∼ B3

∼ B1

∼ B2

G
ρ-neighbourhood types:
B1,B2, . . . ,Bk

admissible tuple: (z, x, y)

B1

B2

B3

Step 1 � Reduction (Admissible Tuples)

q

p

r

∼ B3

∼ B1

∼ B2

G
ρ-neighbourhood types:
B1,B2, . . . ,Bk

admissible tuple: (q, r, p)

B1

B2

B3

Step 1 � Reduction (Admissible Tuples)

q

p

r

∼ B3

∼ B1

∼ B2

G
ρ-neighbourhood types:

B1,B2, . . . ,Bk

Task: After linear preprocessing,

enumerate admissible tuples

with constant delay.

B1

B2

B3

Step 2 � Uncompressed Setting (Algorithm)

G
B1

B2

B3

Step 2 � Uncompressed Setting (Algorithm)

G
LB1

LB2

LB3

u v w

x y z

a b c

Step 2 � Uncompressed Setting (Algorithm)

G

u

output tuple: (u, . . .)

LB1

LB2

LB3

u v w

x y z

a b c

Step 2 � Uncompressed Setting (Algorithm)

G

u

x

output tuple: (u, x, . . .)

LB1

LB2

LB3

u v w

x y z

a b c

Step 2 � Uncompressed Setting (Algorithm)

G

u

x

a

output tuple: (u, x, a, . . .)

LB1

LB2

LB3

u v w

x y z

a b c

Step 2 � Uncompressed Setting (Algorithm)

G

u

x

a

≤
2r

+
1

output tuple: (u, x, a, . . .)

LB1

LB2

LB3

u v w

x y z

a b c

Step 2 � Uncompressed Setting (Algorithm)

G

u

x

b

output tuple: (u, x, b, . . .)

LB1

LB2

LB3

u v w

x y z

a b c

Step 2 � Uncompressed Setting (Delay)

G

∼ Bi

∼ Bj

≤
2
r
+
1

Step 2 � Uncompressed Setting (Delay)

G

∼ Bj

≤
2
r
+
1

∼ Bi

Step 2 � Uncompressed Setting (Delay)

G

∼ Bj

∼ Bi

Step 3 � Compressed Setting

Three main challenges:

1. How do we represent nodes from the structures?

2. How do we represent ρ-neighbourhoods of elements?

3. How do we enumerate admissible tuples?

Step 3 � Compressed Setting (Node Representation)

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

S

A
B

1

2

val(S)

x

y

z

3

1

Step 3 � Compressed Setting (Node Representation)

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

S

A
B

1

2

val(S)

x

y

z

3

1

node z of B’s right side

Step 3 � Compressed Setting (Node Representation)

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

val(S)

x

y

z

(S3B, z)

S

A
B

1

2
3

1

Step 3 � Compressed Setting (Node Representation)

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

val(S)

x

y

z

(S3B, z)

(S2A1B, z)

S

A
B

1

2
3

1

Step 3 � Compressed Setting (Node Representation)

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

S

A
B

1

2

val(S)

x

y

z

3

1

(S3B, z)

(S2A1B, z)

(S1A1B, z)

Step 3 � Compressed Setting (Node Representation)

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

S

A
B

1

2

val(S)

x

y

z

3

1

(S3B, z)

(S2A1B, z)

(S1A1B, z)

S-representations

Step 3 � Compressed Setting (Node Representation)

S

u

v

A

A

B

1

2

1

1

A B

1

2

B

1

1 2

S

A
B

1

2

val(S)

x

y

z

3

1

(S3B, z)

(S2A1B, z)

(S1A1B, z)

S-representations

General problem:
S-representations have size Θ(|D|)
(due to the path component)

Step 3 � Compressed Setting (Expansions)

A

1

2

3

B

C

B

Step 3 � Compressed Setting (Expansions)

A

1

2

3

B

C

B

contact nodes

internal nodes

Step 3 � Compressed Setting (Expansions)

A

1

2

3

B

C

B

Step 3 � Compressed Setting (Expansions)

A

1

2

3

C

B

C

D

Step 3 � Compressed Setting (Expansions)

A

1

2

3

B

C

D

B

Step 3 � Compressed Setting (Expansions)

A

1

2

3

B

C

B

Step 3 � Compressed Setting (Expansions)

A

1

2

3

until we have produced
all elements of the
(2ρ+ 1)-neighbourhood
of the internal nodes.

Step 3 � Compressed Setting (Expansions)

Expansion
of A (E(A)):

1

2

3

until we have produced
all elements of the
(2ρ+ 1)-neighbourhood
of the internal nodes.

Step 3 � Compressed Setting (Expansions)

Expansion
of A (E(A)):

1

2

3

We can compute all expansions in
a preprocessing in linear time O(|D|).

until we have produced
all elements of the
(2ρ+ 1)-neighbourhood
of the internal nodes.

Step 3 � Compressed Setting (Embedding)

E(X)

Step 3 � Compressed Setting (Embedding)

E(X)

v

(X2Y 1Z, a)
X-representation of v

Step 3 � Compressed Setting (Embedding)

E(X)

(X2Y 1Z, a)
X-representation of v

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2
2

2

2
3

3

v

Step 3 � Compressed Setting (Embedding)

E(X)

(X2Y 1Z, a)
X-representation of v

S

A

C

B

D E

X

Y

Z

1

1
1

11

1

1

2

22

2
2

2

2
3

3

dag(D)

v

Step 3 � Compressed Setting (Embedding)

E(X)

(X2Y 1Z, a)
X-representation of v

S

A

C

B

D E

X

Y

Z

1

1
1

11

1

1

2

22

2
2

2

2
3

3

dag(D)

v

Step 3 � Compressed Setting (Embedding)

E(X)

(X2Y 1Z, a)
X-representation of v

S

A

C

B

D E

X

Y

Z

1

1
1

11

1

1

2

22

2
2

2

2
3

3

val(D) = G
(S3C1 . . . X2Y 1Z, a)

dag(D)

v

Step 3 � Compressed Setting (Embedding)

E(X)

(X2Y 1Z, a)
X-representation of v

S

A

C

B

D E

X

Y

Z

1

1
1

11

1

1

2

22

2
2

2

2
3

3

val(D) = G
(S3B1C2E . . . X2Y 1Z, a)

dag(D)

v

Step 3 � Compressed Setting (Embedding)

E(X)

(X2Y 1Z, a)
X-representation of v

S

A

C

B

D E

X

Y

Z

1

1
1

11

1

1

2

22

2
2

2

2
3

3

val(D) = G
(S3B1C2E . . . X2Y 1Z, a)

dag(D)

v

∼ B

∼ B

Step 3 � Compressed Setting (Embedding)

E(X)

(X2Y 1Z, a)
X-representation of v

S

A

C

B

D E

X

Y

Z

1

1
1

11

1

1

2

22

2
2

2

2
3

3

val(D) = G
(S3B1C2E . . . X2Y 1Z, a)

dag(D)

v

∼ B

∼ B

{type-B nodes in val(D)}⋃

X∈N{S-to-X-paths} · {type-B nodes in E(X)}.
bijection

Step 3 � Compressed Setting (Enumerating B-Nodes)

B1

B2

B3

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)

LB1

LB2

LB3

u v w

x y z

a b c

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)

LB1

LB2

LB3

u v w

x y z

a b c

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)

Enum(B1) : (p1, x1) (p2, x2) (p3, x3)

O(1) O(1)

Enum(B2) : (q1, y1) (q2, y2) (q3, y3)

O(1) O(1)

Enum(B3) : (r1, z1) (r2, z2) (r3, z3)

O(1) O(1)

S-representations of B1-nodes

S-representations of B2-nodes

S-representations of B3-nodes

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

(p1, x1)

(p2, x2)

(p3, x3)

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

(p1, x1)

(p2, x2)

(p3, x3)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3
Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3 Enumeration:

Enumerate all

S-to-X paths

in dag(D) . . .

(p1, x1)

(p2, x2)

(p3, x3)

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3

(p1, x1)

(p2, x2)

(p3, x3)

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

Enumeration:

Enumerate all

S-to-X paths

in dag(D) . . .

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3

. . .and prepend to

the X-representations

(s · p1, x1)

(s · p2, x2)

(s · p3, x3)

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

Enumeration:

Enumerate all

S-to-X paths

in dag(D) . . .

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3

. . .and prepend to

the X-representations

(s · p1, x1)

(s · p2, x2)

(s · p3, x3)

(t · p1, x1)

(t · p2, x2)

(t · p3, x3)

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

Enumeration:

Enumerate all

S-to-X paths

in dag(D) . . .

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3

. . .and prepend to

the X-representations

(s · p1, x1)

(s · p2, x2)

(s · p3, x3)

(t · p1, x1)

(t · p2, x2)

(t · p3, x3)

(q · p1, x1)

(q · p2, x2)

(q · p3, x3)

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

Enumeration:

Enumerate all

S-to-X paths

in dag(D) . . .

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3

. . .and prepend to

the X-representations

(s · p1, x1)

(s · p2, x2)

(s · p3, x3)

(t · p1, x1)

(t · p2, x2)

(t · p3, x3)

(q · p1, x1)

(q · p2, x2)

(q · p3, x3)

Problem: the paths s · p1, s · p2, . . . are too large!

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

Enumeration:

Enumerate all

S-to-X paths

in dag(D) . . .

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3

. . .and prepend to

the X-representations

(23, x1)

(5, x2)

(17, x3)

(4, x2)

(23, x2)

(35, x3)

(253, x1)

(8, x2)

(13, x3)

Solution: represent each path by its number
in the lexicographical ordering of all paths starting in S.

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

Enumeration:

Enumerate all

S-to-X paths

in dag(D) . . .

The End � Thank you very much for your attention!

Step 3 � Compressed Setting (Enumerating B-Nodes)
Enum(B)

S

A

C

B

D E

dag(D)

X

Y

Z

1

1
1

11

1

1

2

22

2

2

2

2

3

3

. . .and prepend to

the X-representations

(23, x1)

(5, x2)

(17, x3)

(4, x2)

(23, x2)

(35, x3)

(253, x1)

(8, x2)

(13, x3)

Solution: represent each path by its number
in the lexicographical ordering of all paths starting in S.

Preprocessing:

for every non-terminal X ,

compute all B-nodes in E(X)

(in their X-representations)

Enumeration:

Enumerate all

S-to-X paths

in dag(D) . . .

The End � Thank you very much for your attention!

