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FO-Query Evaluation

First order formula: ψ(x1, x2, . . . , xk︸ ︷︷ ︸
free variables

)

Relational structure: U = ( U︸︷︷︸
universe

,R1, . . . ,Rs︸ ︷︷ ︸
relations

, c1, . . . , ct︸ ︷︷ ︸
constant

).

Result set: ψ(U) = {(a1, . . . , ak) ∈ Uk | U |= ψ(a1, . . . , ak)}.

; Common abstraction of �SQL-queries over relational databases�.

Data Complexity

We consider ψ as constant, and measure complexity only in |U|.

For simplicity, let's talk about directed graphs instead of structures.

Everything said for graphs also holds for general structures!
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FO-Query Evaluation

First order formula: ψ(x1, x2, . . . , xk︸ ︷︷ ︸
free variables

)

Directed graph: G = (V ,E ).

Result set: ψ(G) = {(a1, . . . , ak) ∈ V k | G |= ψ(a1, . . . , ak)}.

; Common abstraction of �SQL-queries over relational databases�.

Data Complexity

We consider ψ as constant, and measure complexity only in |U|.

For simplicity, let's talk about directed graphs instead of structures.

Everything said for graphs also holds for general structures!



A More Practical Perspective: Enumeration

ψ(x1, . . . , xk) G
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FO-Query Evaluation Over Degree Bounded Structures

Theorem
Durand, Grandjean, ACM TOCL 2007

Kazana, Segou�n, LMCS 2011

Let d be a constant. FO-queries over graphs of degree at most d
can be enumerated with linear preprocessing and constant delay.

Without the degree bound this is most likely not possible!

Other approaches for linear preprocessing and constant delay:

Restrict the class of structures
(e.g. low degree, bounded expansion, nowhere dense)

Restrict the class of queries
(e.g. acyclic conjunctive queries)
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Algorithmics on Compressed Data

General idea

Find algorithms that solve problems directly on compressed
instances (without decompressing the instance).



Enumeration in the Compressed Setting

ψ(x1, . . . , xk) compression D of G
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delay
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Straight-Line Programs (SLPs)

Main Idea

Compress input I as a context-free grammar G that describes
exactly this object, i. e., L(G ) = {I} (or val(G ) = I for short).

SLP-framework is very well-established for strings:

w = a a b b a b a a b a a b b a b
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What we want . . .

ψ(x1, . . . , xk)
graph SLP D such that
eval(D) has degree at most d

Dψ,D

Preprocessing

Enumeration

ψ(eval(D)) = (a, b, a, c, . . .)

(d, b, d, a, . . .)

(b, d, c, c, . . .)

delay
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O(|D|)
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+

(linear in data complexity . . .

. . . but wrt. the compressed size)

(constant in data complexity)

(constant in data complexity)



. . . and the problem with that.

Theorem Lohrey, JCSS 2012

▶ There is a �xed FO-formula for which model checking for
SLP-compressed graphs is �intractable�.

▶ Model checking for SLP-compressed graphs is in NL for every
�xed FO-formula, if the SLP has the apex property.
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Our Main Result
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Related Results

Similar results in the recent literature:

▶ MSO-query enumeration on SLP-compressed strings
[S., Schweikardt, PODS 2021/2022]
[Munoz, Riveros, ICDT 2023]

▶ MSO-query enumeration on SLP-compressed trees
[Lohrey, S., PODS 2024]



Proof Roadmap

Step 1: Reduction to a simpler enumeration problem.

Standard application of Gaifman-locality of FO-logic

Step 2: Solve this problem in the uncompressed setting.

Kazana, Segou�n, LMCS 2011

Step 3: Extension to the SLP-compressed setting.

Our contribution
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Step 2 � Uncompressed Setting (Algorithm)
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Step 3 � Compressed Setting

Three main challenges:

1. How do we represent nodes from the structures?

2. How do we represent ρ-neighbourhoods of elements?

3. How do we enumerate admissible tuples?
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(due to the path component)
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Step 3 � Compressed Setting (Expansions)

Expansion
of A (E(A)):

1

2

3

We can compute all expansions in
a preprocessing in linear time O(|D|).

until we have produced
all elements of the
(2ρ+ 1)-neighbourhood
of the internal nodes.
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