Enumeration for MSO-Queries on Compressed Trees Part 2

Markus Lohrey and Markus Schmid

Universität Siegen and Humboldt-Universität zu Berlin

DLT 2024

The Main Result

Lohrey, Schmid 2024

Fix a query $\Phi(X)$. One can enumerate select $(\Phi(X), \text{val}(\mathcal{G}))$ for a given FSLP \mathcal{G} in linear preprocessing time and output-linear delay.

The Main Result

Lohrey, Schmid 2024

Fix a query $\Phi(X)$. One can enumerate select $(\Phi(X), \text{val}(\mathcal{G}))$ for a given FSLP \mathcal{G} in linear preprocessing time and output-linear delay.

Proof roadmap:

Step 1: Reduction to a slightly simpler problem about tree automata and DAG-compressed binary trees.

Step 2: Extension of a known enumeration algorithm for tree automata on binary trees to the case of DAG-compressed binary trees,...

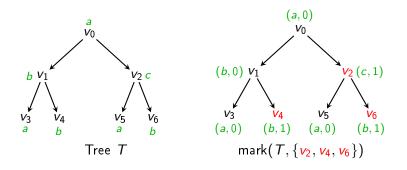
Step 3: ...which boils down to solving a problem of enumerating paths in a DAG.

Let T = (V, E) be a tree and let $S \subseteq V$.

mark(T, S): mark all nodes from S in T. (formally, label a of node v is replaced by either (a, 0) or (a, 1).)

Let T = (V, E) be a tree and let $S \subseteq V$.

mark(T, S): mark all nodes from S in T. (formally, label a of node v is replaced by either (a, 0) or (a, 1).)



A tree automaton $\mathcal A$ is **node selecting** if it accepts marked trees, i. e., trees over the alphabet $\Sigma \times \{0,1\}$.

A tree automaton $\mathcal A$ is **node selecting** if it accepts marked trees, i. e., trees over the alphabet $\Sigma \times \{0,1\}$.

For a node selecting tree automaton A, we define:

$$\mathsf{select}(\mathcal{A}, \mathcal{T}) := \{ S \subseteq V \mid \mathsf{mark}(\mathcal{T}, S) \in \mathcal{L}(\mathcal{A}) \}$$

A tree automaton $\mathcal A$ is **node selecting** if it accepts marked trees, i. e., trees over the alphabet $\Sigma \times \{0,1\}$.

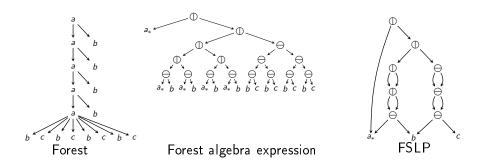
For a node selecting tree automaton A, we define:

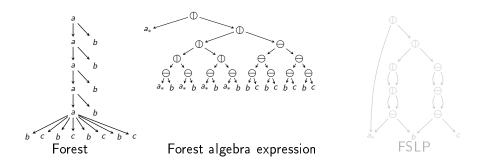
$$\mathsf{select}(\mathcal{A}, \mathcal{T}) := \{ S \subseteq V \mid \mathsf{mark}(\mathcal{T}, S) \in \mathcal{L}(\mathcal{A}) \}$$

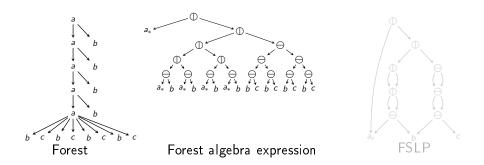
Carme, Niehren, Tommasi, 2004

From a given MSO-formula $\Phi(X)$ one can construct a node selecting nondeterministic stepwise tree automaton (nSTA) \mathcal{A}_{Φ} such that for every forest F:

$$\operatorname{select}(\mathcal{A}_{\Phi}, F) = \operatorname{select}(\Phi(X), F)$$







Kleest-Meißner, Marasus, Niewerth, 2022

From an nSTA \mathcal{A} working on forests one can construct a deterministic bottom-up tree automaton (dBUTA) \mathcal{B} working on forest algebra expressions with $L(\mathcal{B}) = \{E : \text{val}(E) \in L(\mathcal{A})\}.$

We have reduced our problem to the following task:

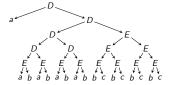
After linear preprocessing time, enumerate select $(\mathcal{B}, \mathcal{F})$ with output-linear delay,

We have reduced our problem to the following task:

After linear preprocessing time, enumerate select (B, F) with output-linear delay,

where ${\cal B}$ is a fixed leaf selecting dBUTA and...

... F is a binary tree...

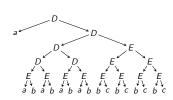


We have reduced our problem to the following task:

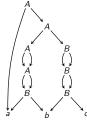
After linear preprocessing time, enumerate select $(\mathcal{B}, \mathcal{F})$ with output-linear delay,

where \mathcal{B} is a fixed leaf selecting dBUTA and...

... F is a binary tree...



...but given as its DAG folding!



Bagan's Algorithm

For explicit trees, the problem can be solved by Bagan's algorithm:

Theorem Bagan 2006

For a fixed leaf-selecting dBUTA $\mathcal B$ and a binary node-labelled tree $\mathcal T$, after a preprocessing in time $O(|\mathcal T|)$, we can enumerate select($\mathcal B$, $\mathcal T$) with output linear delay.

Bagan's Algorithm

For explicit trees, the problem can be solved by Bagan's algorithm:

Theorem Bagan 2006

For a fixed leaf-selecting dBUTA \mathcal{B} and a binary node-labelled tree \mathcal{T} , after a preprocessing in time $O(|\mathcal{T}|)$, we can enumerate select(\mathcal{B} , \mathcal{T}) with output linear delay.

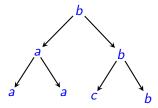
 \sim Step 2 – Extend Bagan's algorithm to the DAG-compressed setting

Leaf-rules: $a \rightarrow q$ for label a and state q

Branching-rules: $(r, p, a) \rightarrow q$ for label a and states r, p, q

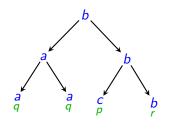
Leaf-rules: $a \rightarrow q$ for label a and state q

Branching-rules: $(r, p, a) \rightarrow q$ for label a and states r, p, q



Leaf-rules: $a \rightarrow q$ for label a and state q

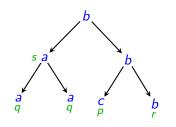
Branching-rules: $(r, p, a) \rightarrow q$ for label a and states r, p, q



 $a \rightarrow q$ $b \rightarrow r$ $c \rightarrow p$

Leaf-rules: $a \rightarrow q$ for label a and state q

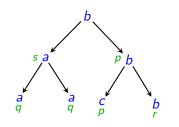
Branching-rules: $(r, p, a) \rightarrow q$ for label a and states r, p, q



 $a \to q$ $b \to r$ $c \to p$ $(q, q, a) \to s$

Leaf-rules: $a \rightarrow q$ for label a and state q

Branching-rules: $(r, p, a) \rightarrow q$ for label a and states r, p, q



 $b \to r$ $c \to p$ $(q, q, a) \to s$ $(p, r, c) \to p$

 $a \rightarrow q$

Leaf-rules: $a \rightarrow q$ for label a and state q

Branching-rules: $(r, p, a) \rightarrow q$ for label a and states r, p, q



$$b \to r$$

$$c \to p$$

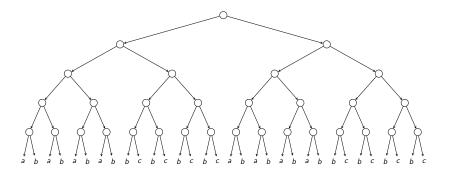
$$(q, q, a) \to s$$

$$(p, r, c) \to p$$

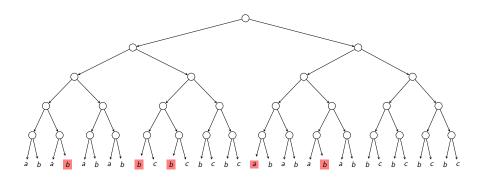
 $(s, p, b) \rightarrow r$

 $a \rightarrow q$

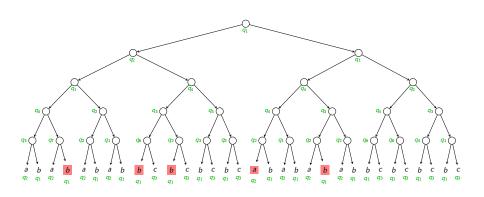
Leaf-labelled tree T:



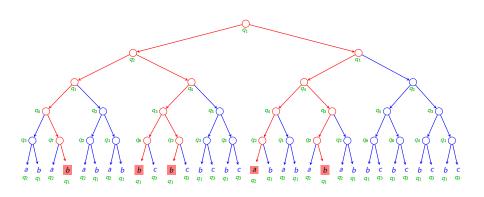
Marked tree mark(T, S) for leaf-set S:

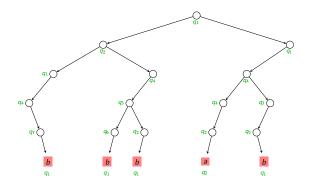


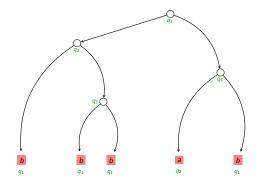
Run on mark(T, S):



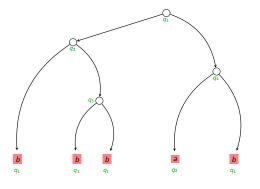
Run on mark(T, S):



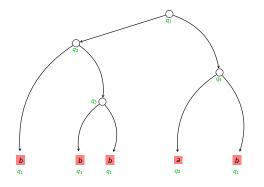




Witness tree for leaf-set S:

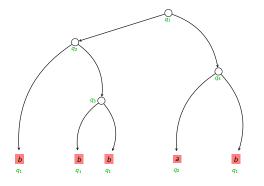


Witness tree for leaf-set S:



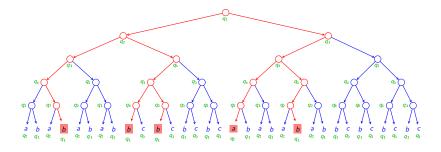
Main idea: Enumerate all witness trees.

Witness tree for leaf-set S:

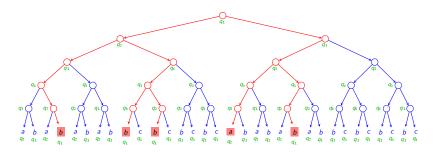


Main idea: Enumerate all witness trees.

But how to do that?

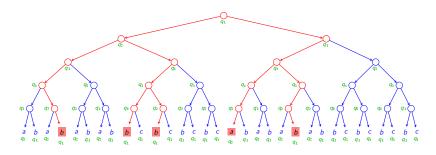


A configuration $(v,q) \in V \times Q$ is...



A configuration $(v, q) \in V \times Q$ is...

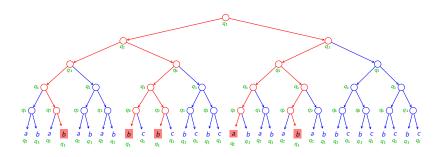
...active wrt mark(T, S) if it is red in the run on mark(T, S).



A configuration $(v, q) \in V \times Q$ is...

...active wrt mark(T, S) if it is red in the run on mark(T, S).

...useful wrt mark(T, S) if it is a red leaf-configuration or a red configuration with two red children in the run on mark(T, S).

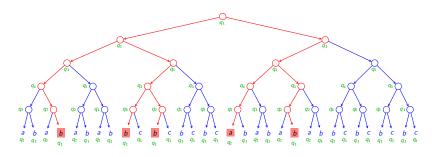


A configuration $(v, q) \in V \times Q$ is...

...active wrt mark(T, S) if it is red in the run on mark(T, S).

...useful wrt mark(T, S) if it is a red leaf-configuration or a red configuration with two red children in the run on mark(T, S).

...active/useful (in general) if it is active/useful wrt some mark(T, S).



A configuration $(v, q) \in V \times Q$ is...

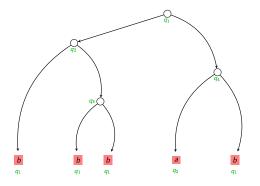
...active wrt mark(T, S) if it is red in the run on mark(T, S).

...useful wrt mark(T, S) if it is a red leaf-configuration or a red configuration with two red children in the run on mark(T, S).

...active/useful (in general) if it is active/useful wrt some mark(T, S).

... **nullable** if it is blue in the run on some mark(T, S).

Top-down construction of witness trees by appending **useful** configurations:



Compute a binary relation ⊢ on **active** configurations:

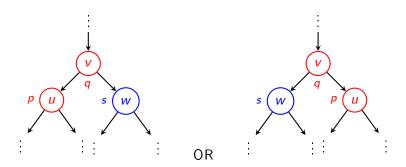
$$(v,q) \vdash (u,p) \iff \exists \text{ nullable } (w,s) \text{ and some}$$

 $\text{mark}(T,S) \text{ with a run with}$

Compute a binary relation \vdash on **active** configurations:

$$(v,q) \vdash (u,p) \iff \exists \text{ nullable } (w,s) \text{ and some}$$

 $\text{mark}(T,S) \text{ with a run with}$

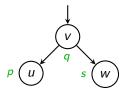


Shortcut forest: ("active configurations", ⊢).

Shortcut forest: ("active configurations", ⊢).

Use shortcut forest for witness tree construction:

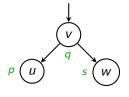
Assume (v, q) is a useful configuration of a witness tree and



Shortcut forest: ("active configurations", \vdash).

Use shortcut forest for witness tree construction:

Assume (v, q) is a useful configuration of a witness tree and



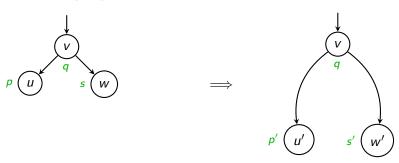
Let (u', p') be useful and $(u, p) \vdash^* (u', p')$.

Let (w', s') be useful and $(w, s) \vdash^* (w', s')$

Shortcut forest: ("active configurations", ⊢).

Use shortcut forest for witness tree construction:

Assume (v, q) is a useful configuration of a witness tree and

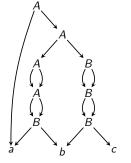


Let (u', p') be useful and $(u, p) \vdash^* (u', p')$.

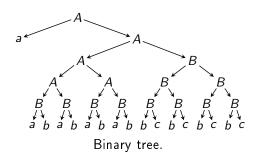
Let (w', s') be useful and $(w, s) \vdash^* (w', s')$

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

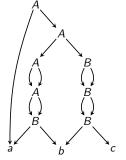
Goal: Run Bagan's algorithm on the DAG-folding of the tree.



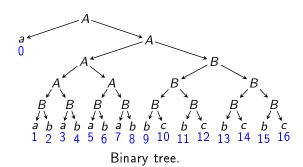
DAG-folding of the tree.



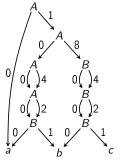
Goal: Run Bagan's algorithm on the DAG-folding of the tree.



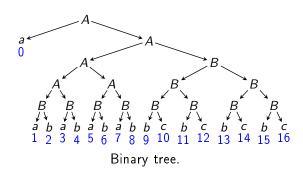
DAG-folding of the tree.



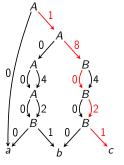
Goal: Run Bagan's algorithm on the DAG-folding of the tree.



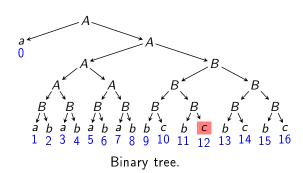
DAG-folding of the tree.



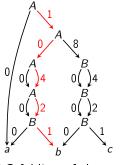
Goal: Run Bagan's algorithm on the DAG-folding of the tree.



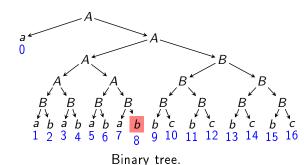
DAG-folding of the tree.



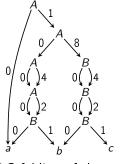
Goal: Run Bagan's algorithm on the DAG-folding of the tree.



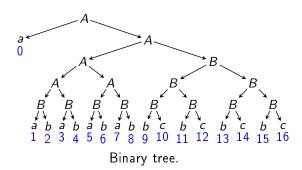
DAG-folding of the tree.



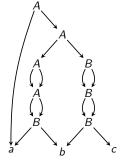
Goal: Run Bagan's algorithm on the DAG-folding of the tree.



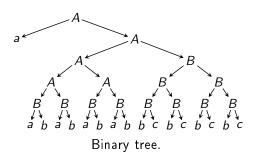
DAG-folding of the tree.



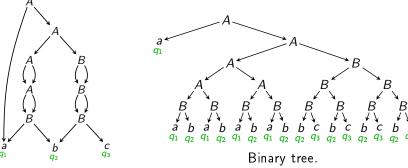
Goal: Run Bagan's algorithm on the DAG-folding of the tree.



DAG-folding of the tree.

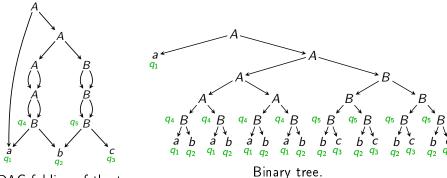


Goal: Run Bagan's algorithm on the DAG-folding of the tree.



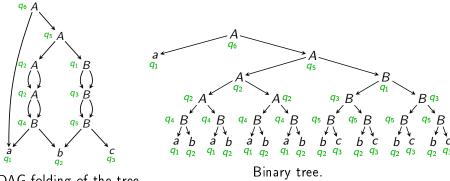
DAG-folding of the tree.

Goal: Run Bagan's algorithm on the DAG-folding of the tree.



DAG-folding of the tree.

Goal: Run Bagan's algorithm on the DAG-folding of the tree.



DAG-folding of the tree.

Problem: We cannot afford to compute the full shortcut forest

Problem: We cannot afford to compute the full shortcut forest Solution: We can compute the DAG-folding of the shortcut forest.

Problem: We cannot afford to compute the full shortcut forest

Solution: We can compute the DAG-folding of the shortcut forest.

Problem: For a given (u, p), we cannot afford to explicitly compute all useful (u', p') with $(u, p) \vdash^* (u', p')$.

Problem: We cannot afford to compute the full shortcut forest

Solution: We can compute the DAG-folding of the shortcut forest.

Problem: For a given (u, p), we cannot afford to explicitly compute all useful (u', p') with $(u, p) \vdash^* (u', p')$.

Solution: For a given (u, p), we can efficiently **enumerate** all useful (u', p') with $(u, p) \vdash^* (u', p')$.

Problem: We cannot afford to compute the full shortcut forest

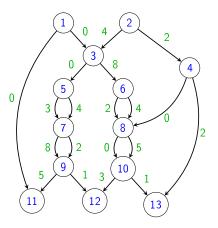
Solution: We can compute the DAG-folding of the shortcut forest.

Problem: For a given (u, p), we cannot afford to explicitly compute all useful (u', p') with $(u, p) \vdash^* (u', p')$.

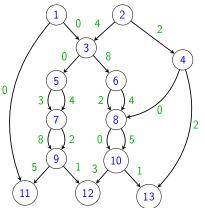
Solution: For a given (u, p), we can efficiently **enumerate** all useful (u', p') with $(u, p) \vdash^* (u', p')$.

This boils down to the following path enumeration problem in DAGs.

Let D = (V, E) be a binary DAG with weight function $\gamma : E \to M$.

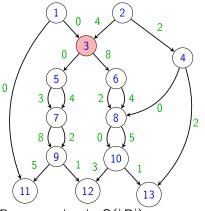


Let D = (V, E) be a binary DAG with weight function $\gamma : E \to M$.



Preprocessing in O(|D|)

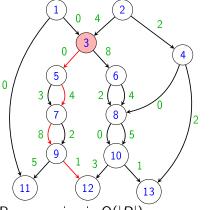
Let D = (V, E) be a binary DAG with weight function $\gamma : E \to M$.



Enumeration for start node 3:

Preprocessing in O(|D|)

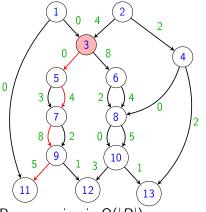
Let D = (V, E) be a binary DAG with weight function $\gamma : E \to M$.



Enumeration for start node 3: (12, 13)

Preprocessing in O(|D|).

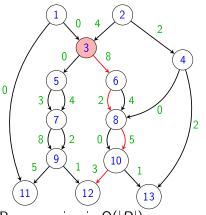
Let D = (V, E) be a binary DAG with weight function $\gamma : E \to M$.



Enumeration for start node 3: (12, 13), (11, 17)

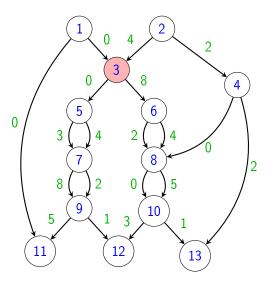
Preprocessing in O(|D|).

Let D = (V, E) be a binary DAG with weight function $\gamma : E \to M$.

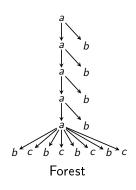


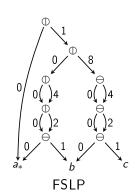
Enumeration for start node 3: (12, 13), (11, 17), (12, 18), ...

Preprocessing in O(|D|).

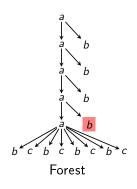


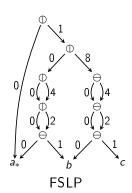
Additional Aspects – Representation of Nodes



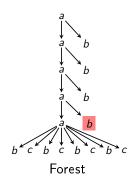


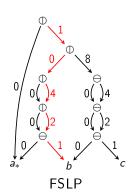
Additional Aspects – Representation of Nodes



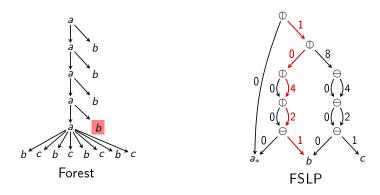


Additional Aspects – Representation of Nodes



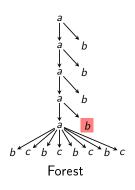


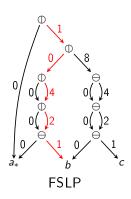
Additional Aspects - Representation of Nodes



→ representation of nodes depends on structure of FSLPs!

Additional Aspects - Representation of Nodes





 \sim representation of nodes depends on structure of FSLPs!

representation by preorder numbers is also possible (by using edge weights from a complicated monoid).

Additional Aspects – Relabelling Updates

Relabelling updates:

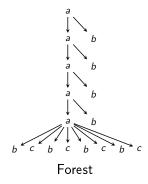
Let F be a forest, v a node of F and x some label.

Relabelling updates:

Let F be a forest, v a node of F and x some label.

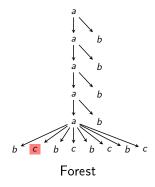
Relabelling updates:

Let F be a forest, v a node of F and x some label.



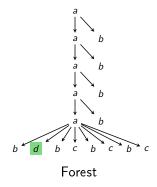
Relabelling updates:

Let F be a forest, v a node of F and x some label.



Relabelling updates:

Let F be a forest, v a node of F and x some label.



Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP \mathcal{G} .

Enumerate the query result w.r.t. F := val(G) with output linear delay.

Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP \mathcal{G} .

Enumerate the query result w.r.t. F := val(G) with output linear delay.

Update data F' := relabel(F, v, x).

Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP \mathcal{G} .

Enumerate the query result w.r.t. F := val(G) with output linear delay.

Update data F' := relabel(F, v, x).

Enumerate the query result w.r.t. F' with output-linear delay.

Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP \mathcal{G} .

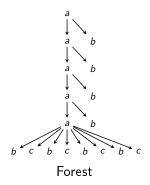
Enumerate the query result w.r.t. $F := val(\mathcal{G})$ with output linear delay.

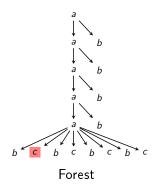
Update data F' := relabel(F, v, x).

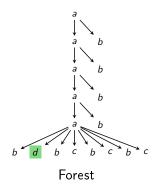
Enumerate the query result w.r.t. F' with output-linear delay.

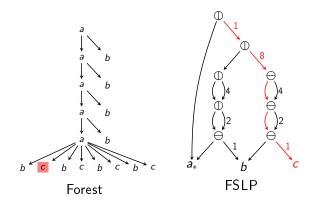
Theorem

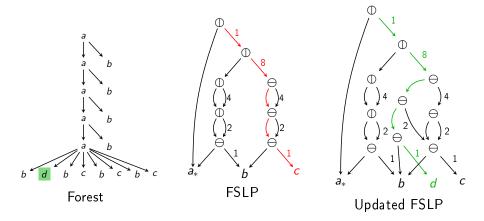
We can maintain relabelling updates in the FSLP-compressed setting in time O(log(|F|)), where the relabelled node is given by its preorder number w.r.t. F.

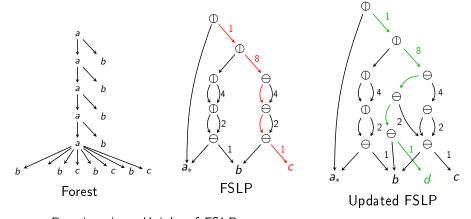




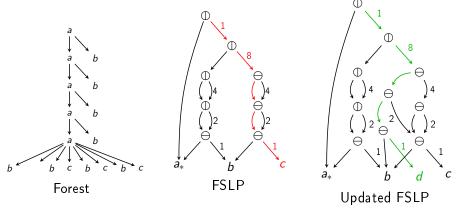








 \sim Running time: Height of FSLP.



 \sim Running time: Height of FSLP.

Height can be bounded by the FSLP balancing theorem:

Theorem (Ganardi, Jez, Lohrey 2021)

FSLPs can be balanced in linear time.

Thank you very much for your

attention