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Fix a query ®(X). One can enumerate select(P(X),val(G)) for a
given FSLP G in linear preprocessing time and output-linear delay.

Proof roadmap:

Step 1: Reduction to a slightly simpler problem about
tree automata and DAG-compressed binary trees.

Step 2: Extension of a known enumeration algorithm for
tree automata on binary trees to the case
of DAG-compressed binary trees,...

Step 3: ...which boils down to solving a problem of
enumerating paths in a DAG.
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mark(T,S): mark all nodes from S in T.
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Step 1 — Tree Automata as Query Mechanisms

A tree automaton A is node selecting if it accepts marked trees,
i.e., trees over the alphabet © x {0,1}.

For a node selecting tree automaton A, we define:
select(A, T) :={S C V| mark(T,S) € L(A)}

Carme, Niehren, Tommasi, 2004

From a given MSO-formula ®(X) one can construct a node
selecting nondeterministic stepwise tree automaton (nSTA) Ae
such that for every forest F:

select(Ag, F) = select(P(X), F)
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From an nSTA A working on forests one can construct a
deterministic bottom-up tree automaton (dBUTA) B working on
forest algebra expressions with L(B) = {E : val(E) € L(A)}.
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Step 1 — dBUTAs Over DAG-Foldings of Binary Trees

We have reduced our problem to the following task:

After linear preprocessing time,
enumerate select(BB, F) with output-linear delay,

where B is a fixed leaf selecting dBUTA and...

... Fis a binary tree. .. ... but given as its DAG folding!
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Bagan's Algorithm

For explicit trees, the problem can be solved by Bagan's algorithm:

For a fixed leaf-selecting dBUTA B and a binary node-labelled tree
T, after a preprocessing in time O(| T|), we can enumerate
select(B, T) with output linear delay.




Bagan's Algorithm

For explicit trees, the problem can be solved by Bagan's algorithm:

Theorem Bagan 2006

For a fixed leaf-selecting dBUTA B and a binary node-labelled tree
T, after a preprocessing in time O(| T|), we can enumerate
select(B, T) with output linear delay.

~» Step 2 — Extend Bagan's algorithm to the DAG-compressed setting
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Step 2 — Deterministic Bottom-Up Tree Automata

Leaf-rules: a — g for label a and state g

Branching-rules: (r, p,a) — g for label a and states r, p, ¢
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Step 2 — Bagan's Algorithm

Leaf-labelled tree T:
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Step 2 — Bagan's Algorithm

Marked tree mark(T,S) for leaf-set S:
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Run on mark(T,S):
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Run on mark(T,S):
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Witness tree for leaf-set S:

Main idea: Enumerate all witness trees.

But how to do that?
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A configuration (v,q) € V x Q is. ..

...active wrt mark(T,S) if it is red in the run on mark(T,S).

...useful wrt mark(T,S) if it is a red leaf-configuration or a red
configuration with two red children in the run on mark(T,S).

...active/useful (in general) if it is active/useful wrt some mark(T,S).

...nullable if it is blue in the run on some mark(T,S).



Step 2 — Bagan's Algorithm

Top-down construction of witness trees by appending useful
configurations:
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Compute a binary relation - on active configurations:

(v,q)F (u,p) <= I nullable (w,s) and some
mark(T,S) with a run with

OR
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Shortcut forest: (“active configurations”, ).

Use shortcut forest for witness tree construction:

Assume (v, q) is a useful configuration of a witness tree and

|

Let (v, p’) be useful and (u, p) H* (v, p).

Let (w',s’) be useful and (w,s) H* (w',s")
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Goal: Run Bagan's algorithm on the DAG-folding of the tree.
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Goal: Run Bagan's algorithm on the DAG-folding of the tree.
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Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Observation: We can run dBUTA directly on DAG.
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Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Observation: We can run dBUTA directly on DAG.
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Problem: We cannot afford to compute the full shortcut forest
Solution: We can compute the DAG-folding of the shortcut forest.
Problem: For a given (u, p), we cannot afford to explicitly compute
all useful (¢, p') with (u, p) H* (U, p').

Solution: For a given (u, p), we can efficiently enumerate all

useful (', p') with (u, p) H* (U, p').

This boils down to the following path enumeration problem in DAGs.
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Step 3 — Path Enumeration in DAGs

Let D = (V, E) be a binary DAG with weight function v : £ — M.

Enumeration for start node 3:
(12,13), (11,17), (12, 18), ...

Preprocessing in O(|D|).
For any s € V, enumerate with constant delay all paths 7 from s
to some leaf u represented by (u,~(7)).



Step 3 — Path Enumeration in DAGs
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representation by preorder numbers is also possible (by using edge
weights from a complicated monoid).
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Additional Aspects — Relabelling Updates

Relabelling updates:
Let F be a forest, v a node of F and x some label.

relabel(F, v, x): The forest F with node v relabelled to x.
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Additional Aspects — Relabelling Updates
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Additional Aspects — Relabelling Updates

Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP G.

Enumerate the query result w.r.t. F :=val(G) with output linear delay.

Update data F’ := relabel(F, v, x).

Enumerate the query result w.r.t. F’ with output-linear delay.

Theorem

We can maintain relabelling updates in the FSLP-compressed
setting in time O(log(|F|)), where the relabelled node is given by
its preorder number w.r.t. F.
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Height can be bounded by the FSLP balancing theorem:

FSLPs can be balanced in linear time.




Thank you very much for your
attention.



