Enumeration for MSO-Queries on Compressed Trees
Part 2

Markus Lohrey and Markus Schmid

Universitat Siegen and Humboldt-Universitdt zu Berlin

DLT 2024

The Main Result

Fix a query ®(X). One can enumerate select(P(X),val(G)) for a
given FSLP G in linear preprocessing time and output-linear delay.

The Main Result

Lohrey, Schmid 2024

Fix a query ®(X). One can enumerate select(P(X),val(G)) for a
given FSLP G in linear preprocessing time and output-linear delay.

Proof roadmap:

Step 1: Reduction to a slightly simpler problem about
tree automata and DAG-compressed binary trees.

Step 2: Extension of a known enumeration algorithm for
tree automata on binary trees to the case
of DAG-compressed binary trees,...

Step 3: ...which boils down to solving a problem of
enumerating paths in a DAG.

Step 1 — Tree Automata as Query Mechanisms

Let T=(V,E)beatreeandlet SC V.

mark(T,S): mark all nodes from S in T.
(formally, label a of node v is replaced by either (a,0) or (a,1).)

Step 1 — Tree Automata as Query Mechanisms

Let T=(V,E)beatreeandlet SC V.

mark(T,S): mark all nodes from S in T.
(formally, label a of node v is replaced by either (a,0) or (a,1).)

Vo
b Vl/ \Vz c
Vg,/ \\/4 V5/ \V6
a b a b
Tree T

(a,0)

Vo
(b,0) V1/ Vo (c,1)
VAYEVAN

(a,0) (b,1) (a0) (b1)
mark(T,{v2, v4, v6})

Step 1 — Tree Automata as Query Mechanisms

A tree automaton A is node selecting if it accepts marked trees,
i.e., trees over the alphabet © x {0,1}.

Step 1 — Tree Automata as Query Mechanisms

A tree automaton A is node selecting if it accepts marked trees,
i.e., trees over the alphabet © x {0,1}.

For a node selecting tree automaton A, we define:

select(A, T) :={S C V | mark(T,S) € L(A)}

Step 1 — Tree Automata as Query Mechanisms

A tree automaton A is node selecting if it accepts marked trees,
i.e., trees over the alphabet © x {0,1}.

For a node selecting tree automaton A, we define:
select(A, T) :={S C V| mark(T,S) € L(A)}

Carme, Niehren, Tommasi, 2004

From a given MSO-formula ®(X) one can construct a node
selecting nondeterministic stepwise tree automaton (nSTA) Ae
such that for every forest F:

select(Ag, F) = select(P(X), F)

Step 1 — dBUTAs Over DAG-Foldings of Binary Trees

7 a /®\ P
i\b @‘/@\9 \®
i\ b CDM/ \t®s. te\/ \fe\ / \@
8 6 6 6 6 6 6 ©
i\b dhalh bl gt gt gt gt (G)) (9)
N 0 0
b‘c/‘{/lmc a*/ \b/ \C

Forest Forest algebra expression FSLP

Step 1 — dBUTAs Over DAG-Foldings of Binary Trees

/ \
O O S} S}

ﬁl\b\

b ¢ b ¢ b ¢ bcC
Forest Forest algebra expression

Step 1 — dBUTAs Over DAG-Foldings of Binary Trees

o
a
I\ 2 o
a b CD/ \9
N O
i\b Kq)\ A(@\ Ke\ Ke\
1\ 6 6 6 6 © 6 ©
[T T T T N A
a b @ pax bax bax bbchCchbchc
N
7IN
b%i%c
Forest Forest algebra expression FSLP

From an nSTA A working on forests one can construct a
deterministic bottom-up tree automaton (dBUTA) B working on
forest algebra expressions with L(B) = {E : val(E) € L(A)}.

Step 1 — dBUTAs Over DAG-Foldings of Binary Trees

We have reduced our problem to the following task:

After linear preprocessing time,
enumerate select(BB, F) with output-linear delay,

Step 1 — dBUTAs Over DAG-Foldings of Binary Trees

We have reduced our problem to the following task:

After linear preprocessing time,
enumerate select(BB, F) with output-linear delay,

where B is a fixed leaf selecting dBUTA and...

... Fis a binary tree...

T

a D

)
N
\
)
~/
AN
m. /
om

Zom
;tm
ru:m
Zom
Tem
Tem
T w

=

Tem

Step 1 — dBUTAs Over DAG-Foldings of Binary Trees

We have reduced our problem to the following task:

After linear preprocessing time,
enumerate select(BB, F) with output-linear delay,

where B is a fixed leaf selecting dBUTA and...

... Fis a binary tree. but given as its DAG folding!
A
\
/N
D
i H 0
D/ \’E A B
ZUN SN 0 ()
D D E E
E/ \E E/ \E E/ \E E/ \E B B
A A A A A A) /\/\
ababababbcbcbchc El b c

Bagan's Algorithm

For explicit trees, the problem can be solved by Bagan's algorithm:

For a fixed leaf-selecting dBUTA B and a binary node-labelled tree
T, after a preprocessing in time O(| T|), we can enumerate
select(B, T) with output linear delay.

Bagan's Algorithm

For explicit trees, the problem can be solved by Bagan's algorithm:

Theorem Bagan 2006

For a fixed leaf-selecting dBUTA B and a binary node-labelled tree
T, after a preprocessing in time O(| T|), we can enumerate
select(B, T) with output linear delay.

~» Step 2 — Extend Bagan's algorithm to the DAG-compressed setting

Step 2 — Deterministic Bottom-Up Tree Automata

Leaf-rules: a — g for label a and state g

Branching-rules: (r, p,a) — g for label a and states r, p, ¢

Step 2 — Deterministic Bottom-Up Tree Automata

Leaf-rules: a — g for label a and state g

Branching-rules: (r, p,a) — g for label a and states r, p, ¢

/\
/\ /\

Step 2 — Deterministic Bottom-Up Tree Automata

Leaf-rules: a — g for label a and state g

Branching-rules: (r, p,a) — g for label a and states r, p, ¢

PN o
AN /\

Step 2 — Deterministic Bottom-Up Tree Automata

Leaf-rules: a — g for label a and state g

Branching-rules: (r, p,a) — g for label a and states r, p, ¢

/ b—=r
c—p

sa b

/\ /\ (9:9,a) =5

i a g b

Step 2 — Deterministic Bottom-Up Tree Automata

Leaf-rules: a — g for label a and state g

Branching-rules: (r, p,a) — g for label a and states r, p, ¢

/ b—r
c—p

s a P p

/\ /\ (9:9,a) =5

A

(p,r,c)—p

Step 2 — Deterministic Bottom-Up Tree Automata

Leaf-rules: a — g for label a and state g

Branching-rules: (r, p,a) — g for label a and states r, p, ¢

r a—q
b b—r
/ \ o
/\ /"b\ (6.q3) =+ 5
q a S

(p,r,c) = p
(s,psb) = r

SO

Step 2 — Bagan's Algorithm

Leaf-labelled tree T:

AT

aaaaaaaa

Step 2 — Bagan's Algorithm

Marked tree mark(T,S) for leaf-set S:

[

a b a b a b a b b ¢c b ¢ b c b c @ b ab alb ab b c b c b c b c

Step 2 — Bagan's Algorithm

Run on mark(T,S):

a b a b ab ab b ¢ |[b ¢ b c b cf@a b abaijb ab bcbcbcbc
92 q1 G2 2 q 92 q g3 9 q @B g 3 g 92 q1 92 2 g q 9B q 9B qg B qg B

Step 2 — Bagan's Algorithm

Run on mark(T,S):

aba.abab.c.cbcbc.baba.abbcbcbcbc

92 q1 G2 @ @2 q G2 q @ g3 @ 9 q @B g 3 @ @ 92 q1 92 92 g g 9B q B g B g G

Step 2 — Bagan's Algorithm

a a a 2 @

Step 2 — Bagan's Algorithm

Step 2 — Bagan's Algorithm

Witness tree for leaf-set S:

Step 2 — Bagan's Algorithm

Witness tree for leaf-set S:

Main idea: Enumerate all witness trees.

Step 2 — Bagan's Algorithm

Witness tree for leaf-set S:

Main idea: Enumerate all witness trees.

But how to do that?

Step 2 — Bagan's Algorithm

@
s qr q:ﬂ QZK

a b albl abaob [B ¢ cbcbc@ babalblabbcbcbcoboc
@ q 92 @ @ a @@ g B, Boa B oa B g @ Roq @ @ @2 g g B g 3 g 95 g G

A configuration (v,q) € V x Q is. ..

Step 2 — Bagan's Algorithm

A configuration (v,q) € V x Q is. ..

...active wrt mark(T,S) if it is red in the run on mark(T,S).

Step 2 — Bagan's Algorithm

A configuration (v,q) € V x Q is. ..

...active wrt mark(T,S) if it is red in the run on mark(T,S).

...useful wrt mark(T,S) if it is a red leaf-configuration or a red
configuration with two red children in the run on mark(T,S).

Step 2 — Bagan's Algorithm

A configuration (v,q) € V x Q is. ..

...active wrt mark(T,S) if it is red in the run on mark(T,S).

...useful wrt mark(T,S) if it is a red leaf-configuration or a red
configuration with two red children in the run on mark(T,S).

...active/useful (in general) if it is active/useful wrt some mark(T,S).

Step 2 — Bagan's Algorithm

A configuration (v,q) € V x Q is. ..

...active wrt mark(T,S) if it is red in the run on mark(T,S).

...useful wrt mark(T,S) if it is a red leaf-configuration or a red
configuration with two red children in the run on mark(T,S).

...active/useful (in general) if it is active/useful wrt some mark(T,S).

...nullable if it is blue in the run on some mark(T,S).

Step 2 — Bagan's Algorithm

Top-down construction of witness trees by appending useful
configurations:

Step 2 — Bagan's Algorithm

Compute a binary relation - on active configurations:

(v,q)F (u,p) <= I nullable (w,s) and some
mark(T,S) with a run with

Step 2 — Bagan's Algorithm
Compute a binary relation - on active configurations:

(v,q)F (u,p) <= I nullable (w,s) and some
mark(T,S) with a run with

OR

Step 2 — Bagan's Algorithm

Shortcut forest: (“active configurations”,).

Step 2 — Bagan's Algorithm

Shortcut forest: (“active configurations”,).
Use shortcut forest for witness tree construction:

Assume (v, q) is a useful configuration of a witness tree and

Step 2 — Bagan's Algorithm

Shortcut forest: (“active configurations”,).
Use shortcut forest for witness tree construction:

Assume (v, q) is a useful configuration of a witness tree and

Let (v, p’) be useful and (u, p) H* (v, p).

Let (w',s’) be useful and (w,s) H* (w',s")

Step 2 — Bagan's Algorithm

Shortcut forest: (“active configurations”,).

Use shortcut forest for witness tree construction:

Assume (v, q) is a useful configuration of a witness tree and

|

Let (v, p’) be useful and (u, p) H* (v, p).

Let (w',s’) be useful and (w,s) H* (w',s")

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Question: How are tree leaves represented in DAG?

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Question: How are tree leaves represented in DAG?

A
\ A
(0 Q) 7N 7N
A o A A B B
"2 "2 "2 Y \

(G 0 E's B8 B B B B
AU BALARAEA
a b ¢ Binary tree.

DAG-folding of the tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Question: How are tree leaves represented in DAG?

A

\A
A/ \B
H 0
00
VAWAN

DAG-folding of the tree.

a \A

0 A/ \B
2~ 4 B/ \B
SN\ SN\ /N /N

B B B B B B B B

R R AV A A v\ v\ v\

apabababbc b c b c b C

1234567891011 12 13 14 15 16
Binary tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Question: How are tree leaves represented in DAG?

A\{A
AS// \\35

ol o
0%32 0%22

N N

DAG-folding of the tree.

a \A

0 A/ \B
2~ 4 B/ \B
SN\ SN\ /N /N

B B B B B B B B

R R AV A A v\ v\ v\

apabababbc b c b c b C

1234567891011 12 13 14 15 16
Binary tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Question: How are tree leaves represented in DAG?

A\\lAA

A‘O/ \\8‘8
ol o}

oo o)
N YN

DAG-folding of the tree.

\B
g

v N\ v N\ v N
B B B B B B

U A TR v
babab
456738

-~
S0
s g

(9}
w\
ﬁ/

b
9 1
Yy

Binary tree.

N
—_
w
—_
S

B

,_.
SRS
5o*

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Question: How are tree leaves represented in DAG?

A\\lAA

Ay \\S‘B
ol o}

oo o)
N YN

DAG-folding of the tree.

A

a/ \A
0 A \B
B/

O\

A A \B
v \ Y\ Y N\ Y N\
B B B B B B B
R A T S A VA ¢\ v\
apababalb bc b c p c b cC
12345678910111213141516

Binary tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Question: How are tree leaves represented in DAG?

A\{A
AS// \\35

ol o
0%32 0%22

N N

DAG-folding of the tree.

a \A

0 A/ \B
2~ 4 B/ \B
SN\ SN\ /N /N

B B B B B B B B

R R AV A A v\ v\ v\

apabababbc b c b c b C

1234567891011 12 13 14 15 16
Binary tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Observation: We can run dBUTA directly on DAG.

A
\ A
(0 Q) 7N 7N
A o A A B B
"2 "2 "2 Y \

(G 0 E's B8 B B B B
AU BALARAEA
a b ¢ Binary tree.

DAG-folding of the tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Observation: We can run dBUTA directly on DAG.

A

\A A
A/ \B q M~

(o4 N 5 N

() () B/ \B B/ \B v \B B/ N

B B al v aj v a./ v aj Nb b¢ \C b¢ \C b¢ \4C b¢ \C
a/ \b/ \c 1 g2 91 g2 91 g2 91 G2 g2 93 G2 93 g2 93 g2 G3
o a2 & Binary tree.

DAG-folding of the tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Observation: We can run dBUTA directly on DAG.

A

N\
SN

() () /N /N /N /N
A OF "ATRTRATATATA A TA
/\/\ albabababbcbcbcbc

qal qlz qC3 1 g2 91 g2 91 g2 91 q2 G2 B g2 93 g2 93 g2 G

DAG-folding of the tree. Binary tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Goal: Run Bagan's algorithm on the DAG-folding of the tree.

Observation: We can run dBUTA directly on DAG.

de A

(0 () A B

2 0 > A/ \qu o B/ \qu

() () /N /N

% B s B @B @B 9B @B @G B 9B 9B 4B

VA J\ A" /A A" "AY vy AN

/ \ / \ ab ab ab ab bc bc bc bcC
g b 5 1 g2 91 g2 91 g2 91 g2 G2 93 g2 93 g2 93 g2 93
1 G2

DAG-folding of the tree. Binary tree.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Problem: We cannot afford to compute the full shortcut forest

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Problem: We cannot afford to compute the full shortcut forest

Solution: We can compute the DAG-folding of the shortcut forest.

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Problem: We cannot afford to compute the full shortcut forest

Solution: We can compute the DAG-folding of the shortcut forest.

Problem: For a given (u, p), we cannot afford to explicitly compute
all useful (¢, p') with (u, p) H* (U, p').

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Problem: We cannot afford to compute the full shortcut forest
Solution: We can compute the DAG-folding of the shortcut forest.
Problem: For a given (u, p), we cannot afford to explicitly compute
all useful (¢, p') with (u, p) H* (U, p').

Solution: For a given (u, p), we can efficiently enumerate all
useful (', p') with (u, p) H* (U, p').

Step 2 — Bagan's Algorithm for DAG-Compressed Trees

Problem: We cannot afford to compute the full shortcut forest
Solution: We can compute the DAG-folding of the shortcut forest.
Problem: For a given (u, p), we cannot afford to explicitly compute
all useful (¢, p') with (u, p) H* (U, p').

Solution: For a given (u, p), we can efficiently enumerate all

useful (', p') with (u, p) H* (U, p').

This boils down to the following path enumeration problem in DAGs.

Step 3 — Path Enumeration in DAGs

Let D = (V, E) be a binary DAG with weight function v : £ — M.

Step 3 — Path Enumeration in DAGs

Let D = (V, E) be a binary DAG with weight function v : £ — M.

Preprocessing in O(|D|).
For any s € V, enumerate with constant delay all paths 7 from s
to some leaf u represented by (u,~(7)).

Step 3 — Path Enumeration in DAGs

Let D = (V, E) be a binary DAG with weight function v : £ — M.

Enumeration for start node 3:

Preprocessing in O(|D|).
For any s € V, enumerate with constant delay all paths 7 from s
to some leaf u represented by (u,~(7)).

Step 3 — Path Enumeration in DAGs

Let D = (V, E) be a binary DAG with weight function v : £ — M.

Enumeration for start node 3:
(12,13)

Preprocessing in O(|D|).
For any s € V, enumerate with constant delay all paths 7 from s
to some leaf u represented by (u,~(7)).

Step 3 — Path Enumeration in DAGs

Let D = (V, E) be a binary DAG with weight function v : £ — M.

Enumeration for start node 3:
(12,13),(11,17)

Preprocessing in O(|D|).
For any s € V, enumerate with constant delay all paths 7 from s
to some leaf u represented by (u,~(7)).

Step 3 — Path Enumeration in DAGs

Let D = (V, E) be a binary DAG with weight function v : £ — M.

Enumeration for start node 3:
(12,13), (11,17), (12, 18), ...

Preprocessing in O(|D|).
For any s € V, enumerate with constant delay all paths 7 from s
to some leaf u represented by (u,~(7)).

Step 3 — Path Enumeration in DAGs

Additional Aspects — Representation of Nodes

Z\b \\14®

é\b @‘0/ \B‘e
é\b 0 0(@)4 0(9)4
N o ol

TN 1™ N

Forest FSLP

Additional Aspects — Representation of Nodes

Z\ b \\14®

é\ b @‘0/ \B‘e
é\b 0 0(@)4 0(9)4
é\ ; of 2 of)2

TN 1™ N

Forest FSLP

Additional Aspects — Representation of Nodes

Z\b)

é\b @‘O/ \B‘e
é\b 0 0(@)4 0(9)4
é\ ; of)2 o)z

TN I N

Forest FSLP

Additional Aspects — Representation

o

(o nlN

o

e

NS

b C b crp>c
Forest

a

of Nodes

ol ol
a*P/ \14by \1‘c

FSLP

~» representation of nodes depends on structure of FSLPs!

Additional Aspects — Representation of Nodes

®\1‘®
@‘O/ \8‘9
0 0(@)4 0(9)4
. 0(6)2 0(9)2
NN I N
Forest FSLP

(o nlN

o

e

VY

~» representation of nodes depends on structure of FSLPs!

representation by preorder numbers is also possible (by using edge
weights from a complicated monoid).

Additional Aspects — Relabelling Updates

Relabelling updates:

Let F be a forest, v a node of F and x some label.

Additional Aspects — Relabelling Updates

Relabelling updates:
Let F be a forest, v a node of F and x some label.

relabel(F, v, x): The forest F with node v relabelled to x.

Additional Aspects — Relabelling Updates

Relabelling updates:
Let F be a forest, v a node of F and x some label.

relabel(F, v, x): The forest F with node v relabelled to x.

N

N
N
N

Additional Aspects — Relabelling Updates

Relabelling updates:
Let F be a forest, v a node of F and x some label.

relabel(F, v, x): The forest F with node v relabelled to x.

N
N
N
N

Additional Aspects — Relabelling Updates

Relabelling updates:
Let F be a forest, v a node of F and x some label.

relabel(F, v, x): The forest F with node v relabelled to x.

o o

o

ﬁ(—m«;m?m?m?m

%

o
[}

o
e}

\

o
Q.
o

M
o
=
[}
(9]
+

Additional Aspects — Relabelling Updates

Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP G.

Enumerate the query result w.r.t. F :=val(G) with output linear delay.

Additional Aspects — Relabelling Updates

Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP G.

Enumerate the query result w.r.t. F :=val(G) with output linear delay.

Update data F’ := relabel(F, v, x).

Additional Aspects — Relabelling Updates

Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP G.

Enumerate the query result w.r.t. F :=val(G) with output linear delay.

Update data F’ := relabel(F, v, x).

Enumerate the query result w.r.t. F’ with output-linear delay.

Additional Aspects — Relabelling Updates

Maintaining relabelling updates in the FSLP-compressed setting:

Carry out the linear preprocessing wrt. FSLP G.

Enumerate the query result w.r.t. F :=val(G) with output linear delay.

Update data F’ := relabel(F, v, x).

Enumerate the query result w.r.t. F’ with output-linear delay.

Theorem

We can maintain relabelling updates in the FSLP-compressed
setting in time O(log(|F|)), where the relabelled node is given by
its preorder number w.r.t. F.

Additional Aspects — Relabelling Updates

Additional Aspects — Relabelling Updates

M
]
=
D
0
—+

Additional Aspects — Relabelling Updates

N,
N
N

Additional Aspects — Relabelling Updates

i\ “‘@
N @/ Ye
N (b O
N 0 0
N Ve

Additional Aspects — Relabelling Updates
®

) . \1‘

; N

l\\) 8

N A / \

N o O

N G 0 f \
NS NN / \l>< \

a b d c

FSLP
Forest Updated FSLP

Additional Aspects — Relabelling Updates
®

(D{(D \1‘
e / \

N

N

\ O] S

N, G 5\
71N SN
b/{Fore:\bc i FSiP C a*/ \&Xd\c

N
N
N
A
!

Updated FSLP
~> Running time: Height of FSLP.

Additional Aspects — Relabelling Updates

®\® \1‘
e / \
Qe (O)s

B [f\
© 1 © 1
b c p>rc a*/ \b/ \C a*/ \¥)><d\c

Forest FSLP

N
N
N
A
|

7////

7

b b
Updated FSLP
~> Running time: Height of FSLP.
Height can be bounded by the FSLP balancing theorem:

FSLPs can be balanced in linear time.

Thank you very much for your
attention.

